NASA CR-134476

NASA-CR-134476) NASIS DATA BASE N73-31138

HANARGEMENT SYSTEH - IBHM 360/370 O0S HvT

INPLEMENTATION. . 7: DATA BASE
ADBINISTRATOR (HNeoterics, 1Inc., Cleveland, Unclas
Chio.)/g|¥86 p HC CSCL 09B G3/08 13776

’

NAS IS DATA BASE MANAGEMENT SYSTEM - IBM 360/370 0S MVT IMPLEMENTATION
VII- DATA BASE ADMINISTRATOR USER'S GUIDE

Reproducad by

NATIONAL TECHNICAL
INFORMATION SERVICE

US$ Department of Commarze
Sprinpfisld, YA, 22151

NEOTERICS, INC.

prepared for

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

NASA Lewis Research Center
Contract NAS 3-14979

1

1. Repaort No, 2. Government Accession No. 3. Recipient's Catalog No.
NASA CR-134476 -
4. Title and Subtitte NASIS DATA BASE MANAGEMENT SYSTEM - IBM | 5. Report Date
360/370 OS MVT IMPLEMENTATION September 1973
VII - DATA BASE ADMINISTRATOR USER'S GUIDE 5. Performing Organization Cade
7. Author(s) 8. Performing Organization Report No.
None
= 10. Work Unit Ne,
8. Performing Organization Name and Address !
Neoterics, Inc. 1. Contract or Grant No,
2800 Euclid Avenue NAS 3-14979
Cleveland, Chio 44115 13. Type of Report and Period Covered
12. Spansoring Agency Name and Address Contractor Report
National Aerongutics and Space Administration 13, Spansoring Agency Code

.Washington, D.C. 20546

15, Supplementary Notes :

Final Report. Project Manager Charles M. Goldstein, Computer Services Division, NASA

Lewis Research Center, Cleveland, Ohio

16, Abstract

The NASIS development workbook contains all the required system documentation, The workbook

includes the folloWing seven volumes:

-1 - Installation Standards (CR-134470)

II - Overviews (CR-134471)

III - Data Set Specifications (CR-134472)

IV - Program Design Specifications (CR-134473)

V - Retrieval Command System Reference Manual (CR-134474)

VI - NASIS Message File (CR-134475)
VII - Data Base Administrator User's Guide (CR-134476)

17. Key Words {Suggested by Author(s})

18. Distribution Statement

Unclassified - unlimited

19, Security Classif. (of this report) 20. Security Classif. {of this paga)
Unclassified ‘ Unclassified

21, No. of Pages 22, Price*

179)

* Far sale by the National Technical Information Service, Springfield, Virginia 22151

TABLE CF CONTENIS

TOEIC A - MULTI-TERNINAL TASKING

R.2

MT/T OPERATORS GUIDE.

APPENDIX A

»] . [] * » -

I. INTRODUCTTION & o o & + o o o
II, MONTTOR CONMANIS o « o o o + o«
&* . - - - L]] L . L) » -

COMEAND SUMMARY, o+ o o s = & &

TOPIC B - DATA BASE EXECUTIVE

B. 1

DBPAC CONV. AND FOFRM, ROUTINES
I, INTRODUCTION: o » » o
II. CALLING SEQUEHNCE. .
ITY. RESTRICTIONS. o+ o o o »

APPERDIX

Diagnostic Messages and Codes

APPENDIX
Sample Va

DBPLY IANGUAGE EXTENSION ,
I. INTRODUCTION. « «

II. THF
IIT. DATA

IV, BRECORDS . &+ ¢ o =«
Ve FIELDS: v ¢ o « + &

¥Ii. LIST
VII, BULE
The
The
The

The
The
The
The
The
The
The
The
The
The
The
The
The
The
The
The
The
The
The
The
The

] »

A + [] L] » L L] - L d

BC » L] L » - - » -

lidation Foutine.

PREPROCESSCOR, .
BASE AND FILES

S -* L] » L] - * L

S AND SYNTACTIC
CCLIST Function
CLOSE Statement
CPLIST Function
DB Prerrocessor
DUPLIST Function,
#FIBLD Furctior .
FINISH Statement.
FREE LIST Statenment
GET PIFLD Statement .

GET INDEX KEY Statenen
GFT KEY SET Statenment

[}

*® 9 ® & % a2 4 8 * @ e ¢ » & 2 & 4 @ & T * 4 »

ion

(=]

tde & & 6 o # =8 » @
;]
* 4 * S s s » Ui s & B 2 8 &

CRIPTI
ction,
t .

*

GET LIST INT, KEY INTIC State

GET LIST KEY {(() Statement

* 8 5 8 »

.

GET LIST EEY INTO Statesment

GET LIST ¥XFY SET Statement
GET LIST SET Statement. .«
GFT RECORT Statement. .+ .«
% INCLODE DR Statement. .
LIST Function 2 = B 8 & &
#LIST FUnctionN: o o « s+ =
LOCATE Statement. . « «
1LOCATE SUTFILF Statement,
ON Statement. « o o » «
OPEN Statecment, + o« 2 o

-

L

a & 2 & s @ 4 g

v

& & 2 » @

s W ® % 8 % & # » 3 * 8 & 9 &

s & 5 % & 8 % & * & % 9 e & 8 E g * 4 ¢ s v =

- L » - -

" B g & & B ® e ® g ¥ 4 3 s % & W s % & * & B e b a & g ¢ & " g ¥ & 3 B g ' g =

s % § % 5 & & 5 & g & § 8 § S B B g & g &8 @ B 3 ¢ g & & B s * g 0V ¥ g % b € 3 @

PAGE 2

P I
WO NN

*» & » & B

10
10
11
13
L]
14
15
15
16

16
18
22
23
26
32
33
34
s
36
38
39
40
41
42
Gy
45
47
48
49
51
52
54
55
56
57
58
60
61
62

a % a5 & 8 85 ® 9 & 5 9 & W s ¢ $ ® 4 & g W g # a B g b & " & " g = 8 g & 5 & 3 =
s B @ ® 4 % ¥ g & 5 & @ # 9 ® g W g & g S g B s & & * § & 5 & g € B ¢ T & * 2 »

APPENDIY Rus s s o o = o

The PUT FIELD Statement . .

L]

The PUT LIST INT, KEY FRCOFN Statement,

The BEAD Statement,. « + o ¢
The READ INDEY Statement. .+
The READ SUEFILF Statement, .
The REPIT Statement o « + «

The SET LIST 1IKE LIST Statement

The ULIST Function. .
The UNLOCK Statement,
The UPLIST Function .
The WRITE Statement .
The #XREF Functiomnm. .

* * »

"« & & B 8 &

File Level Statements .
Pecord level Statements .
Physical Record Statenments .,

Field level StatementsS. « « .
Data Base list Stategments ., .,
¥on Data Base List Statements
GlossSary. o« « ¢ s+ & s o o » o

s & ¥ " & e %
« & & 9 g @ B

TOPLC C - UTILITIES

C.4

RDBJOIN - JOINING NEW USERS,

I,
Iz,

I1I.

YNTRODUCTION, .
COMMANDS. .
JOIR, . .
QUIT. . .
CHANGE, .
ARD . .+

»

DELETE.,
DISPLAY
EXAMPLES

. & @ ® & 8 = s

" 4 & & & w @ & » »
» - L] » . @ . - - -
« & & a & 3 2 & 5 B

-
-
]
L]
-
.
L
-
>

- L] - » L] - & []
- L] - L] a - L] - »

. & * & & B & =

.
3
L]
-
.
.
.
.

- - L] » L] L] »

TOFIC D - MAINTENANCE

D.2

DESCRIPTOR EDITOR. . «

I,
II.
ITL,
IV.

INTRODUCTION. o« o »
INVORING THE EDITOR
DEPINITIONS . « «
CREATE MOLE FUKRCTICN
ALD~CHANGE Function
ACLLIRE Function. .
CHEKPOINT Function .
CREATE SUBFILE Funct
DFLETE Functicn ., .
DISPLAY Function.
END Function, .« .
FIFLDS Function
FILE Function .,
FIELD SECURITY.
MOVE Functicn .
PEINT Function.

s & ¢ 5 ® % & # |did W W &+ 2 8 B
0

* # 8 s s 4 8 s e 2 e 4 s 4 » @

s & B # & 8 & ® & a4 ®W & 4 & = b @

s ® & % B % & % B3 " & % & " & 4w

w ® & # 8 ® 4 & e B 2 & & @ & & 3

L] L] L] - » - »

b]

* ® & & & ®© 8

- []) [

. # & ¢ ® & & 5w

» & » % 3 % 9 b ¥ - 0w ®© g €& 5 = 9

- L] L] - - » » L] L] L] - L]

® % B & % ¥ ¢t e w 4

- ® & ® & * ¢ B 2 * 8 ® 5 & g & @

a * » = a & 4 & o & g & g B 9 @

2 & & ® g & § ® g ® & & O ¥ @

® * 83 & & & @ & ® & ¥ »

 ® a =

s & ® 5 ® a ® g * =

. ® 5 @ @ & g & p * e T p 2 4 w

PAGE 3

64
66
67
7¢
12
74

78
79
80
81
82
85
85
85

* ® 5 & 5 & § & o g * s b g
* % 4 & g B 9 % g & e o 9 g

86
86
86
88

-» L] - -
- - -» -»

89
89
89
89

90
990
20
21
91

* s & 9 ® & % 5 * @

® 4 & & 8 8 & 5 ® @

4 ® & ® 8 ® a2 & ¢ B g € 4 & 9 e @
.
anb
[]
N

D.4

D.5

D.7

RENAME Functichm o« o« « + =
RECORD SECURITY Functionm.
RESTORE Function. « « »
SAVE STRATEGY Function, .
DEFINE SUPER FIELT Functio
Iiv. OPDATE MODE FUNCTICHKS . .
CHANGE Function . .
DISPLAY Furcticn. .
END Functione « « o
PIELDS Functicn . .
FIFLD SECORITY Funct
PATCH Function. . .
RECORD SECURITY Functi
REVIE¥ Functicn , , .
APPENDIY Aus 4 ¢ o 5 o o
Command Formats « +
APPENDIY Buw o ¢ s & » » &
Create Code Cterand Re
APPENDIY Cou s ¢ s o o &
Predefined Fields . .
APPENDIYX Duus o o » 5 s » &
Descriptor File Overvi
APPENTDIX Eas s o o 2 s ¢ » @
The Position cf Fields,
RDBLOAT - LOADING NEW FILES,
I. INTRODUOCTION. + o s o
II. LINKEDITY o o o o =
IIXI., INPOUT AND ODTPUTS .
IV. CCETROL - - e [] [] »
V. OPERATIRG MODE. . .
vI, DELOAD EXIT RCUTINES,
YII, LOADING MULTI-FILES .
FILE INVERSION - INLDEYXING.,
I. INTRODUCTION. « « &
II. MCDE OF OPERATIOR ., .
IIT, IPUTS AND OUTPUTS ., .
IV, CCNTEBCOL + o« & » o .
V. EXAMPLES OF UOSE . .
INDEY MERGE -~ COMBINE, .
I. INTRODOCTION. . .
I¥. INPOTS AND CQUTPUTS., .
III- CGNTROL L] » » L] L] - L]
P

Q

* ity ® @

n

® % = % 9 # 5 ® @& 8 5 + & ¥ s v

ati h

- - - - [] - - - - L » - - . - L] [] L] - * - L] L] . - L] » [] L] - [] m - L] - . [] - - - - & - - L] L] * [] L]

D e » & e o & o2 O+ Te v 5
e
[]

N

. & =+ &

” = L] -

IV, HMODE OF OPERATIONS.
Y. INVOEKING DBINDM . .
VI, EXBANPLES.: + o+ o «
VII. PROGRAM NOTES , . .
RDBENTH - MAINTENANCE - U
I. INTRCDUCTION, + +»
II. INPUTS AND OUTPOUTS. .
III. CONTBOL L L] * - D -] L) L * [] -
IV, PMEAINTENANCE OPFRATING PROCEDURES,
vV, MAINTENANCE MCLCE CF CEERATICN . .
VI, EXAMPLES. o ¢ s o o =+ ¢ ¢ s o o =

T

|

8 % e & v & * & & % & @ ¢ & 8 & @ %+ w b P e s s s s s oo
[T TR TR T T S T RN R R R S I R R T T TEN T R Y« TN R TR DN TR N T Y TN TN I .- B L

« ¥ 8 % 8 ¥ & + 8 & ¥ * B B g & § & b b g B ¢ & a8 4 B g & & Py e & ¥ § 5 p B B v g & s " 5 * .

»
*
L]
]
1]
L]
]
.
*
]
]
.
.
-
L]
-
.
L]
.
-
A
]
-

* & * 3 % a & 8 4 5 B s ® g A 84 g & g & 4 &8 g & 3 & g @ s &

> & 85 ® g & g B g & g & g & g B § G g " 8 W § * s 4 § € & ¥ g ¥ 4 8 ¢ " g T 4 B 3 ¥ & " & B g * & 4 2 " »

& ® 4 % @ & 8 & g4 # 3 W g ®w g ® g * § € P & a8 v g & 4 B g ® g P 2 b et 4 B 9 ® 4 * g % s ¢ 2 T 2 % a v

PAGE U

« 106
« 107
« 107
« 107
. 108
. 109
. 109
« 113
» 113
« 113
+ 113
. 114
« 117
« 118
. 120
. 120
« 124
. 128
. 126
« 126
. 129
« 129
» 132
« 132
. 133
. 133
« 133
« 133
. 135
« 132
o 140
. 142
« 151
« 151
« 151
. 152
152
« 158
« 161
« 161
» 161
« 161
+163
» 164
. 164
» 165
. 166
« 166
« 166
. 166
« 167
. 168
. 168

L " 8 L] » * o L] [- 3 - » * - ® » [] - - » . & L] » . - » » [) [] ») - -» L - @ & ® & - - * 8 -) - - > & > &

TORIC E- TERMINAL SUPPORT

E.1

TSPLI LANGUAGE EXTFANTION .

I. INTRODUCTION. & + »

TI. STATEMENTS: & s » &
ENABLE Statement. . .
ENTRY Statenent . « .
ON PAGE CALL Statement,
PRCMNPT MSG Statement. .
PROMPT MSG KEYWORD State
REAL INTO Statement . .
WRITE FROM Statement,
POT FRCM Statement, .
FLUSH Statenment + «
FINISH Statement. . »

-
L
L]
»
-2

*® * » * s € 3

ent.

» 8 & * ¢ H e s 0 0 8 2
e = 9 * 9 HMe s & & s » @

- L] - -
 ® & #» @

TOPIC G - USAGE STATISTICS

G, 1

USAGE STATYSTICS o o ¢ ¢ ¢ s = &
I. IRTRODUCTION., & o o o s s 1+ »
II., STATISTICS CHECEPCINT , , +» =
ITI. RETRIEVAL STATISTICS REPCET .
IV, MAINTENANCE STATISTILCS REPORT

a % 3 & & 8 & 8 » & 8 4 =

s ® 4 &

- - - L] - [] - L] » - - a ™

*« ¥ 8 * &

® ® & ® ¢ * & & § " 4 & @

*« ® a2 & =

8 % 4 8 & B p & g ¢ 4 = g

4 ® » &+ ®

PAGE 5

» 169
. 169
« 170
« 170
. 171
» 171
171
172
«173
. 173
+ 173
« 174
+ 178

. % 8 % 5 & 9 & 9 % 3 9 @

+ 175
» 175
« 175
« 176
« 191

PAGE 6

TOEIC A,2 - MT/T CPERATOR'S GUILE

I. INTRODUCTION

The single program that c¢cntrols NASIS wvwhen the MNT/T
version of that system is running 1is called the MT/T
Momni tor. The monitor is the only part of NASIS with which
the MT/T Operator combunicates,

To communicate with the monitor simply depress the ATTENTION
key, The wmonitor will prompt you with a time-stamped
question mark, for example:

10325 ?

and unlock the kevboard, Note that while your keyboard is
unlocked, WNASIS is stopped. Waste no time in entering
comands and never, never leave your terminal sitting with
its keyboard unlocked.

II. MONITOR COMMANDS

The monitor commands are comprised of a command name and, in
sore cases, additicnal operands., The mcnitor, when reading
comands, recocgnizes three fespecial"” characters--~-tvo
deli miters: (separators Ltetween commpand names and for
oper ands) comma and blank, and a character which may enclose
an operand to dJdenote that that operand has "special®
char acters within it: the guote mark. The deliniters
bela ve slightly differently--a string of contiguous blanks
is i nterpeted as one delimiter, but two contiquous comnmas
are interpeted as two delimiters, and so forth, If you have
to put blarnks, commas or guotes withis an operand, vyou must
surround that operand with gquote wmarks. In addition, if
there are enclosed guotes, they pust be paired inside the
operand, For example

'don*'tt let this confuse you, it*''s not really that

difficult?
is a valid quoted string containing emhedded commas, blanks
and goote marks.

MSG NASISID,TEXT Sufficient Abbreviation

{(S.A.): M
This command sends the message specified by the TEXT operand
to the user who is on HNASIS vunder the userid specified by
the operand NASISID., Remember to surround the message text
with quote marks if it contains ccmmpas, guote marks, or
imbedded spaces. Example:

8 NEQ1,'HERE''S A MESSAGE,?

BCST TEXT S.A.: B

PAGE 7

This command sends the message specified Yy the TEXT operand
to all the users logged on to NASIS. Exanmple:
BC *DATACELL IS DOWYN NSIC notAVATILABLE,"®

FORCE NASISIT S.h.: ¥
This command is wused +to terminate a NASIS user. The user
{identified by NASISILY is sent the message

N%¥¥k TASK DELETED BY FORCE ##*¥n and then logged off,
Example:
F NEO1

KILL KRASISID S.2.: K
This compand is used when FORCE fails, The KILL command may
be reentered several times., The wuser (if the KILL works)
will receive a program interrupt five at location zero, so
vyou may ignore the message abhcut that event., Example:

EI NEO1

SHUTDOWN TIME S.3.7 5§
This command terminates NASIS, The TIME operand specifies
how long to wait before actually terminating the systen
(default is five mnminutes)., If the time specified is zero
minutes ©NASIS is terminated immediatelv., This =zero-time
shutdown should be used only when absolutely necessary
hecause it doesn't give warning to the users. Normally,
both you and the users get a message stating the time-of-day
vhen the system will shut itself dewn, Should you change
your mind about the shutdown enter another shutdown to
override the previons one. (Only the last SHUTDOWN command
entered has any effect.) Example:

s 30 (To terminate NASIS in a half-hour)

LIMIT TERH,# S.h.t 1
This command allows vyou to 1limit the numler of users of
various sorts allowed on NASIS and to limit some of the
resources of NASIS itself, The TERM coperand is either a
nclass® of NASISIDs (defined as the first two characters of
the NASISID) or one of the keywords "USERS®", WPRINTSH,
nGEARCHES™, "SORTS"™ or Y“RECORDS", The keyword "OSERS" is
used to limit the total nunmher of users allowed on NASIS and
{s the default value assumed if TEFRM is onitted. Keyword
nSFARCHESY limits the size of a set a NASIS user may search
on, "PRINTS" 1lipits the size of a set he may print and so
on., If +the TERM cperand consists of exactly two characters
it is assumed to te a class name and the number of NASISIDs
of that class allowed on NASIS will bke limited, If the TERM
operand consists of any other number of characters than two,
it is assuwed to be a keyword or a part of a keyword. 1If
the # operand is defaulted, the value 32767 is used. If the
operand is entered, TERM must be also entered, even if you
use just a comma to defaunlt it. Exanmples:

LIMIT ,20 {(Limit total number of uvsers to 20)

L 5,50 (Limit search set size to 50)

PAGE 8

LT NE,2 {(Limit ®"NE¥ NASISIIS to 2)

USERS S.h.2 U
This command lists all the NARSISIDs of the users currently
using HNASIS., Only those wusers comrletely 1logged on are
list ed, if there are users in the process of getting on,
they w%ill not show up on the list frem a USERS,

NUSEFS S.,A.,: N c/:N/: N/
This command tells you how rany users are currently using
NASIS. - Unlike USERS, this command also tallies the users
vho are in the prccess of logging on.

NEWS "OFF"ITEXT S+.A.x NE
This command is used to control the sending and compesition
of the "news" which 1is sent to each uvser as he 1logs on to
NASI S, Enterimpg "CFFY as the operand terrinates the sending
of all news and deletes all the text from the news buffer,
Entzaring anything but "OFF" causes whatever you enter to be
added as the last 1line to vhatever is already in the news
buffer, If you enter no operands at all to NEWS, it will
add a carriage-return to the end of the news buffer,
Examples:

HE¥S OFF {fkills the sending of news)

NEWS 'THIS LIWE WILL GC AT THE END OF THE EUFFER,?

STATS ®ON/VOFF® S.A. ST

When this command with operand OFF 1is encountered, the
Moni tor +turns on an indicator telling NASIS not to take
@sage statistics. If ON 4is entered as the operand, that
indicator is turned off. NCTE: This comnmard may only be
entered via the "NASIS.COMMBRNLS {0)*" dataset.

PAGE

APPENDIX A, - COMMAND SUMMARY

COMMAND OPERANDS

MSe NASISID,TIEXT
BCSEY TEXT

FORCE NASISID

KILL NASISID

SHUT DOWN TIME

LIMy TERHM, #
USERS

NUSERS

NEWS "OFF"{TEXT

STATS ugNw/UgFFN

FUNCTION

Send message'to specified user,
S5end message to all users,

Get rid of a user,

Really get rid cf a user,
Tefminate NASIE,

Limit NASIS users Or TeSQULCES.
List current WASIS users,
Count current NASIS users.
Turn off or add to news text,

Set usage statistics mode,

PAGE 10

TOEIC B,1 - CONVERSION, VALIDATION, A¥D FCEMATITING

ROUTINES

INTRODUCTION

The design of the NASIS system provides for three types
of user-written routines to perform special processing
unique to a particular field, A "user" is a mainline
proqracmer for the specific data base; such as the data
base administrator. These routines are classified as
conversion, validaticn and formatting,

The DBPL/I statements used in the NASIS system provide
for apdating and retrieving from a data tase, The data
is alwvays assumed to be character strings. The ability
to specify Conversion, Validation and formatting
routines is ryprovided, allow for massaging field data
and still neet the DBPL/I character string
requirement,

The Conversion routine is used to alter character
string input to any desired form, The Validation
routine is used either to verify the results of a
Conversion routine or to verify the character string
in put,

The Formatting routine 1is used to alter the internal
stored data tack to a character string.

A. CONVERSION Routine

The CONVERSION routine is called by the data base
executive, DBPAC, to convert the data passed by
the user in a DBPL/I statement €rom an EBCDIC
character string to same other type of
revresentaticn €cr storaqe on a file, The
CONVERSION routine is invoked ty all DBPL/I
statements that place data, by field name, onto
the data base.

B. VYALIDATION Routine

The VALIDATION routine is call of theed
immediately after the c¢all CONVERSION routine,
The function of this routine is to verify data
input for storage on the data base, via the rules
specified by the user of this field, A VALIDATION
routine may be present regardless of the presence
of a CONVERSIOE routine, To assist in this
evaluation, the NASIS svstem provides for a
validaticn argument.

II.

C.

PAGE 11

FORMATTING Routine

The FORNMMAITING routine is called +to change the
data read from the data lase into the desirable
output form. The PCRMATTING routine is invoked by
all DBPL/I statements that retrieve data, by field
name, from the data base, The formatting routine
specified for a field will be called whenever the
data in that field is retrieved.

A collection of "standard® conversion and
formatting routines is prcvided in the DBEXITS
module (Section IV, Topic B.4).

CALLING SEQUENCE

In general, these routines are called dynamically, by

name,

They rust have been link-edited with the current

Retrieval system and be capable of accepting a PL/I
formatted parameter list,

A.

CCXVERSION Routine

The format of the CALL statement used by DBPAC to
invoke the CONYERSICN routine is as follows:

CALL rtnname {input-data, output-area,
error=-bit) 3

wheres:

wrtnpname" identifies +the particular routine
to be called, as specified in the field
descriptor. It is the routine's
procedure name or an entry point,

"input-data®” is a varvimg length character
string, maximum length equal +to 4000,
into which DBPAC has placed the input
data value,

"output-area"™ is a varving length character
string, maximum length equal to 4000,
injitialized to null, into which the exit
routine rlaces the converted data
value,

Yerror-bit?" is a bit switch, impitialized to
one (1}, which is set ¢to =zero (0) if
there were no errors uncovered in the
conversion, cor cne (1) if errors were
detected, The Lurden of setting the
switch to zerce {O) is with +he

PAGE 12

CONVERSICYN routine,
B, YALIDATICN Routine

The format of the CBRLL statement used by DBPAC to
invoke the VALIDATICN routine is as follows:

CALL rtonname {input-data, output-area,
error-hit, arqupent);

where:

"rtnpname" identifies +the particular routine
to be called, as specified in the field
descriptor. It is the routine's
procedure name or an entry point,

finput-data” is a varying lenath character
string, wmwaximam lenqgth equal to 4000,
into which DBPAC places the input data
value after conversion,

foutput~-area”™ is a varving length character
string, maximum lenath equal to 4000,
initialized to null, into which the exit
routine places the validated data
value,

Harror-bit® is a btit switch, initialized to
one (1), which is set to zero (0} if
there were no errors encountered in the
validation, or o¢ne (1) if errors were
detected. The VALIDATICN ©Routine 1is
responsible for setting this switch,

"argurent” is a wvarving~lenqgth <character
string, maximunm length equal to 5¢, into
which DEPAC places the validation
araqument, as read €from the appropriate
field of the descriptor for this data
field.

C. FORMATTING Routine

The format of the CALL statement used by DBPAC +to
invoke the FORMATTING routine is as follows:

CALL rtnname {input-data, output-area):
wheres

rtnnane" identifies the particular roatine
to be called, as specified in the field

PAGE 13

descriptors, It is the routine's
procedure name or an entry point,

"input-data® 1is a varving 1length character
string, raximnum length equal to 40090,
into which DEPAC places the data value
read from the data base,

“ontput-area™ is a varving lenoth character
string, maximum length equal to 4000,
initialized to null, into which the exit
routine places the formatted data
value,

TTI. RESTRICTIONS
The routines must heed the following restrictions:

3, The routine can nct make anv calls to DBPAC {i.e.,
it should not contain any DEPL/I statements).

B. The routine is the lowest level rodule; i.e,, it
does not call any other routines.

C. The routine is written in PL/I and compiled with
the same compiler as the Retrieval PL/I modules,

PAGE 14

APPENDIX A,

Diagnostic Messages and Codes Produced By the Conversion,
Validation, and Formatting Routines.

A.

B.

031

032

053

054

Diagnostic Messages
CALL ERROPF: MODULE ##%k¥%xxx CANFCT EE LOADEL,

This error message is generated if the module named
cannot ke Jloaded when called by UBPAC. Ignoring the
sitvation and allowing the system tc rupn nay cause
unpredictable results,

The most protable reasons for this errcr are:

1. failure on the part of the user to have the ijob
library containing this prcaram properly DDEFed.

2. inconsistency between the name of the voutine as
specified in the descriptor file and the name
actually used when writing the rrogram.

DBPAC Error Codes Associated With +the Cenversion,
Validation, and Formatting Routines

KEY FIELD FAILED CONVERSION.

The data value passed to the CCNVERSION routine, for
the kXey field of the data base, was fcund to ke in the
wrong format.,

KEY FIELD FAILED VALIDATICHN.

The data value passed to +the VALICATION routine, for
the key field of the data Lase, vwas found to be
invalid,

LATE FIELD FAILED CONVERSICE,

The data value passed to the CCNVERSION routine, for a
data field, was found to he in the uwrong fornmat,

DATA FIELD FAILED VALIDATICN,.

The data value passed to the VAIIDATION routine, for a
data field, was found to be invalid,

PAGE 15

APPENLIX B,
Sample Validation Routine

A sample VALIDATION routine is shown below. The function of
the routine 1is to compare the input data value to each of
the four byte entries carried in the validation arquments,
If a match is found, the routine sulstitutes a numeric code
for the input data value, resets the error bit to accept the
fietd and returns to DBPAC. If no matck is found, the
rout ine returns to DBPAC with the error bhit set to redect
the field.

/% THIS IS A VALIDATICN ROUTINE FOR TEE CFERATION CODES: ¥/

/¥ THE PARAMETERS PASSED ARE: */
/% A= THE INPUT STRING WHICH IS TO BE VALIDATED, %/
/* B= THE VALGE TO EE RETURNED AFTER VBRLIDATION, */
/% C= THE BIT SWITCH, *'{"' MEANS PASSED VALIDATION. */
/¥ *1Y WEANS FAILEL VALIDATION., */
/% D= THE VALIDATION ARGUHNERTS. *x/
/% D IS COMECSED OF THE FOLLOWING CHARACTER STRING: */
/¥ . YADDEADLCRCNGEFLDCTELRDELF? */

CHECKOP: PROCEDURE {A,B,C,D);
DECLARE {(&4,8,D0) CHARACTER(*) VARYING, /*PARAMETERS., */
C BIT(1); /*PRARANETERS. ¥/
ON EREOR GO TO-CUT_DIERTY:
DO I = 1 T0 21 BEY 43
IF A = SUBSTIR{D,I,%)
THEN GO TO CUT_CLEAN;
END;
QUT_DIRTY: /% IF IT DOES WOT MATCH KEYWORDS IN ARGUMENT., */
¢ = "1'B;
RETURN:
OUr _CLEAN: /% THE YALIDATION CF OP_CODE ¥AS SUCCESSFUL., ¥/
C = "0'B3
B = A3
RETURN;
END CHECKOP;

PAGE 16

TOHC B,2 - DBPL/I LANGUAGE EXTEKSICN USER'S GUIDE

I,

II,

INTRODUCTION

This manual is for PL/I Programmers writing a mainline
program that accesses a NASIS data tase., The data base
organization being wused is fully specified in the
"NASTIS Overview",

A1l data btase access is done by a combination of:

1. an extension of the PL/I language, called
DBPL/Y, faor data base access,

2. a compilation-time scurce program processor,
LB, and

3. executicn-time routines DEPAC and DBLIST.

This manval is the specification of the DBPL/I
language extension and is the refererce nranual to the
bB Preprocessar. Detailed =specification 0f the
internals of the LR preprocessor are given in Section
IV, Topic B,1 of the D¥B, and the details on the
execution-time routines are given in the DBPAC Design
Specifications (Section IV, Topic #,2 of the DWH).
Neither of these tvwo sections are needed for writing,
compiling and executing rainline programs; they may he
needed for debugging.

Chapter 1II of this manual discusses the usage of the
DB preprocessor, Chapters IIT throngh VI are composed
of discussions and examples of the different features
of DRPL/T and their interrelationships. <Chapter VII,
wgyles and Syntactic Descripticns", provides a detailed
reference tc specific dinfcrmation in alphabetical
order, Appendix & dis a guick reference to DBPL/I
syntax.

THE PREPROCESSCR
aA. Overview

DBPL/I lanquage statements have to be processed
at compilation-tire, The processing consists of
syntax analysis and the qeneraticn of PL/I
statements CALLing DBPAC tc¢ accomplish what the
DEPL/I statements signify. This processing is
done by the preprocesscr stage of the PL/T
conmpiler under control of a preprocessor procedure
named DB, A prcarawmer using DBPI/I does not have
to write the DB preprocessor or te concerned with
the PL/I statements that are generated by it; but
he is required to write certain statements in his

B,

PAGE 17

source fFrogram so that the B preprocessor is
properly invoked by the PL/I compiler for his
program. He must also refrain from using certain
identifiers which are reserved words for the DB
preprocessort's exclusive use.

Usage

The statements required tc rrecperly invoke the DB
preprocessor are illustrated in an example progran
in Fiqure 1.

1. FIG_1: PROCEDURE OPTICNE {(REEFTRANT);

2. % INCLUDE LISEMAC({DE);

3. DECLARE REPORT# CHABACTEFR {13) VARYING;

4,

S. DB {{ ON ERRORFILE(STAR)Y GO TC EOTE: })

6.

7. DE ({

8, READ FILE(STAR) KEY('67N26508%);

9, GET FILE{STAR} FIELD{'REPTINC') INTO(REPORT#);
10. 1}

11. PUT DATA (REPORT#);
12, RETURN:

14, NOTE: PUT DAT2A (STAR.CNCODE);
15. DONE: DB ({ FINISH;)
6. ERD FIG_1;

% INCLULE(DB);

One %¥INCLULE DB statement nmust te written
immediately following the external FPROCEDURE
statement of the compilation, Any PROCEDURE
statement attributes could have Leen used in line
%+ The ¥ INCLUDE ©DE statement must precede all
other statements suchk as line 3,

DB({O¥ ERROBRFILE{STAR) GO TO NOTE3;}}

Any DBPL/I statement, such as this ON statement,
nust he written as a sukarqument in a DB
greprocessor functicn reference, As many BB
statements npay be used as required, BAny PL/I
statements required may te used at lines 3, 4, 6,
and 11-14, Lines 7-10 1illustrate that more than
one DBPL/I statement may be vwritten in one DB
statepent, However, no non-DEPL/I statements
would bte pvermitted within a DB function
reference,

CR{{FINISH;})

ITI.

C.

DATA

h.

PAGE 18

One DRPL/I FINISH statement must be written
following all cther EL/F statements in the
compilation. Tt will wusuvally be written -ust
preceding the ENI statement of the external
procedure because it generates a FETUPN statement.
If the statement in line 14 is executed, then the
procedure will be terminated by control passing
segquentially to the RETURN statement generated for
line 15. The label in line 15 is not reguired,
but it would be valid as shown (e.g,, line 12
could he: GO TO DOWE3).

The DB prevrocessor functicn generates diagnostic
comments (see Section III, Topic B.1 of the
D¥B) . %hen reviewing a compilation, the
programner should first find the summary
diagnostic message (DBC67) to kncw how many error
diagnostics for which to search,

Reserved Fords

The FINISH ON-condition is reserved for use by the
DB preprocessor, 7The following identifiers are
reserved for the uses specified in this manual or
for the DB preprocessor's use:

CCLIST

CELIST

DB

DBEFCBP and all other identifiers beqginning
lDBI

DUFLIST

ERRORFILE

RFIELLD

DBPL/Y file-nares

FINISH

LIST

#LIST

LISTERR

GLIST

OPLIST

#XEBEF

The PL/I HIGH and NULL built~-in function names may
e used as such in the program, bkut the names nust
not be cotherwise declared.

BASE AND FILES

Qverview

The DBPL/I language provides statements that
enable data tc be transritted between internal

B.

c.

PAGE 19

main storage and external storage devices
organized as one or more data bases.

Data Sets

Each "data set" is a named, latelled collection of
related data, subdivided intec keyed data set
records.,

The one "descrintor data set® for a data base
stores data describing the informaticn data set{s)
and their interrelationships, It is a collection
of one cr more descriptor regions.

Each "descripter regicn" is a collection of
descriptor records for an information data set.
The first record in a descriptor reqion is a data
set descriptor record. Subsequent records in a
descriptor region are field descriptor records.

Files

DBPL/I requires a file name to be used for a file,
What data set(s) a file name represents is deduced
fror the file title. Characteristics of a file
may be describted with keyvwords, called file
attributes, specified for the file name, deduced
contextually, or assumed by default.

2 "file name" is an identifier specified in the
FILE clause of DBEPL/Y statements, A file name nmav
not exceed the seven-character length limitation
for external names. The user must execute a PL/Y
ALLOCATE statement for the MPCR Lefore executing
any DBPL/Y statements, For example, to use a
PDBPL/I file-name "plex" the following statement
must be executed:

ALICCATE PLEX:

0f course the allocation must be done in a program
in which PLEX will bhe automatically declared
Lecause of its use in a DBFL/T statement. If the
module where the BALLOCATE is to be done does not
othervise need DBPL/I statements, the following
are recommended as a mipimum:

% INCLUDE LISEMAC{DE):

ALLOCATE PLEX;

DB{(CN ERRORFILE(PLEX)} SYSTEN;))
DB ({FINISH;))

B "file title" can he specified for a DRPL/TI file

De

PAGE 20

either through the file name or through the
character string value of the expression in the
TITLE option of a [BPL/I OPEN statement. If a
file is OPENed implicitly, or if no TITLE option
is specified in the OPEN statement that causes
explicit opening of the file, the file title is
assumed to be the same as the file rnane,

A file title, not beginning with a pound sign (%),
consists of a six-character left-aligned dataplex
identification and a one-character suffix, Which
data set{s) the file name represents will be
deduced from the file title suffix value as
follous:

blank: the identified data base or anchor
data set (for physical record
operations: GET RECORD or WRITE).

numeric: the particunlar asscciated data

set,
Z-Q: the rarticular subfile data set.
A-P: the rarticular index data set.

B pound siagn (#), prefixed toc a file title,
specifies that a file name represents the
descriptor region rather than the information data
set itself, {This conbiration pay he specified
only in the TITLE ortion of a DBPL/I OPEN
statement because it results in ap eight-character
title.) If the eighth character of a descriptor
region title 1is blank, the file represents only
the anchor descriptor region, This facility
allows mainline prcgrams tc create, maintain or
retrieve from descriptor regions for their own
pPuUrposes.,

File fattributes® for a file name may be
specified explicitly in a IEPL/I OPEN statement or
assumred by defauvlt. Different attributes may be
applied in different openings of +the same file in
a program; at any gparticular time, the attributes
applied by the most recent opening apply to the
file nanme.

File level Statements

DBPL/I provides the OPEN, CLOSE and ON ERRORFILE
statements for file level operations, A1l are
optional:; a simple wainline may not need any of
them, There 1is rc statement for declaring a

PAGE 21

pBPL/T file; the DF preprcocessor generates the
necessary Mainline File Centrol Block (HFCB)Y
auntcmatically.

The OPEN and CLOSE statements may be used for any
of the purposes indicated in their descriptions in
Chapter VII of this ranual,

The ON ERRORFILFE statement is used to establish a
user's error routine in the mainline to which the
DBPAC execution routines will return when an error
condition (e.g9., key not found) occurs on a file.
Several ON statements fcr a file may be executed
in a program either before or after the file is
opened,

An "error routine™ mnmust tregin with a statement
label (the same latel identifier specified in an
0N statement). PL/I (or DEEI/I) statements may be
written following +the 1latel to handle the error,
These statements pay reference certain fields in
the MPCE for assistance in determining the error
identity and resurina normal execution. MNFCB
fields are referenced using a gnalified nane
consisting of - the file npame and an MFCB field
name, The MFCB fields that may be referenced in a
file exception rcutine are as follovs:

file-name,OBCOLE is a binary integer whose
valoe specifies the exceptional
condition. The meanings of the various
ONCODE values are in Secticn IXII, Topic
B.3 of the DW%B,

file-nane,ONFIIE is the current file title,

file-name, ONFIFLD is the current field name
{vhen agpplicable}.

file-name,ONRETURYN is a label variable set by
DEPRC.

An errocr routine may be terminated in any manner;
for certain of the less serious ONCODEs, a GO TO
file-nane,ONRETURN; statement may be used which
transfers control to the statement following the
one that raised the exceptional condition,

For a more generalized exception routine for one
or more files, the relevant MFCR fields may be
referenced using a qualified name consisting of
the reserved kevword ERRORFILE and an MFCB field
nane; e.49., ERROBRFIIE.QONCOCDE.

PAGE 22

IV. KRECORDS

A,

E,.

Cverview

The data items in a data set are arranged in data
set records, In this manval, a "physical record"
means a single data set record having an internal
self-defininag, variable-length format, a
fixed-length internal k¥ey, and the other data
items,

The simple term, "record", in this manuval means
either a logical record or a vphysical record,
depending con content,

The #fcurrent record of a file® is the single
record having the key value estatlished by the
most recent record level operation on the data
base component file, It is accessibkle only by
DBPL/I statements; the mainline has no means of
addressing it., In a spanned index, the "current
record® is actually a Vregion" of one or more
physical records made to tehave 1like one legical
record.

Record Level Statements

DEPL/I provides the LCCATE, REARL, and ONLOCK
statements for reccrd 1level operations, The
record level statements cause a record {possibly
more than one physical record) to be transmitted
between the data set(s) and the current record of
a file. The +transrission may be immediate (READ
or UNLOCK after update) ands/or subsequent (LOCATE
or READ for update). LCCATE and REAL cause
antomatic file opening, if necessary.

The LOCATE statement is used +to create a new
current record having a new key for subsequent
transpission to the file {(no WRITE statement is
needed). The LOCATE SUEFILE statement is used to
create a new current subrecord,

The REAL statement is used to retrieve a record
from a file and establish it as the current record
of the file. If +the record is updated, it is
suhsequently retransnitted to the file (no REWRITE
staténent is neededy, The READ SUBFILE statement
is used to retrieve a subrecord and READ INDEX to
retrieve an index record.

The UNIOCK statement releases a locked current
record so that other tasks can read it, If the

c.

PAGE 23

record was updated, it is retransmitted to the
file. The UNLOCK SUBRFILE statement releases a
locked current subrecord.

Fhysical Record Statements

DBPL/I provides the GET RECORD and WRITRE
statements for physical records. These are
special purpose statements intended for use in a
utility wmainline fcr backing wuvn, Testoring or
reorganizing one particular data set at a time.
They may be used onrnly by the owner of the data
base.

The GET RECORD mcves the current physical record
vithout change to the user's receiving field {(for
backup purposes).

The WRITE statement transmits a physical record
from the mainline without change to a data set
(for restoring or reorganizing purposes). WRITE
causes automatic file opening, if necessarvy.

Ve FIELDS

A.

Overviewv

The data items 1ir a record are arranged in fields
and, optionally, field elements,

A "field" is a data item having a field name, an
internal field descriptor and one or more values
per record, Since some fields may have multiple
values per record, an individual data item is
called a field elenment. This section of the
manunal relates primarily to anchor, associated and
sukrecord fields, although the GET INDEX KEY
statement may bte used for index kevy f£ields,
Facilities for subfile ccntrol fields and for the
list-of-keys field in index records are discussed
in Chapter VI of this manual,

A "field name" is an eight-character string value
identifying a field. A mainline written in terms
of a kpown vparticular data base may use a
character-string coeonstant in string <quotes, A
more generalized mainline may use an
eight=-character string variable and assign a value
to it from input data or from a descriptor record
before using it as a field name. The names of the
fields in field descrirptor rtecords are given in
the Descriptor File Specification,

B,

PAGE 24

An "internal field descriptor®™ is either a field
descriptor record in a descriptor region (for data
base fields) or an internal descrirptor (for
descriptor fields)., The descrintor record for an
anchor field mav limit GET access of a FIELD to
those users the file owner has authorized., (PUT
and REPUT may be used only by the file owner).

A "field element valuve" is always a varying length
character string value in the mainline.
{Internally, it may be fized- or variable-length
and character or ccded form.) There may be some
transformation between +the intermal value and the
mainline value, If the field descriptor names an
input validation and/or ccnversiom routine or an
output formatting routine, the relevant routines
will be invoked automatically when the field is
accessed.

The internal value of a field element is null
until a wvalu= is ©POT 1into it, 2 GET FIELD
statement retrieves a value even if it is null; a
pull value vyields a null mainline string value
{unless a formatting routine translates a null
internal value ¢to something ncn=-null such as *NO
DATA YET'), To handle such a case, the most
general way to retrieve field values 1is as
follous:

p0 I=1 TO MAX{(#FIFLL{(nfchk,fldname}, 1y
DB({GET FILE (mfcbh)FIELL {£ldname)INTO (var))}
IF LENGTH({(var)=0
THEN GO TO FIELD_EXHAUSTED:
/*Use field element value in var.*/
END;
FIELD_EXHAUSTED:

Do not attempt GET FIELD more than #FIELC times or
something like *NO DATA YET' will be retrieved
after values actually present, The mainline may
determine if the field element is null by testing
if the length of the mainline string is zero, A
REPUT statement replaces an element vwith a new
value which may be a null value.

Field Level Statements and Functions

DBPL/I gprovides the PUT FIELD, GET FIFLD and REPUT
statenments for the creation, retrieval, and
pmaintenance of field elements on anchor and
subfile records. #FIELD is a PL/I fanction
provided for obtainring the numters of elements in
a field. The field level statements cause ohe or

PAGE 25

nore field elements to he transmitted individuoally
between the current record of a file and a
mainline proaoram, A 7Tecord level statement mnust
have been executed to estatlish a current record
of +the file before a field level statement may be
execnted,

The PUT PFIELD statement 1is used to create a new
field element in the current record of the file.
It is subsequently transmitted te the file
automatically (no ®RITE or BREWRITE statenent is
needed),

The GET FIELD statement is used to retrieve a
field element fror the cerrent record of the
file.

The REPUT statement is used to replace an existing
primary field alerment in the cuorrent record of the
file, It is subsequently retransmitted to the
file autopmatically {nc BEWRITE statement is
needed).,

The #FIFLLC function calculates the number of
elements in a field. It mnay be ussed to govern
GETting of elements or merely to determine if a
field has any elements or nct.

For a field that may not have multiple elements,
the field 1level statements transmit the single
field element value,

The following discussion aprlies to fields that
pay have multiple elements, PUTting an element
appends it to the right end of the field. GETting
of a TFIFLD element proceeds frorm left to right
and, when the end of the field is passed, null
valves are generated. REPUTting an element
replaces the "current element of the field" which
is the element most recently ottained by a GET
FIELD from the current record of the file, There
is no facility for referring to an element by its
position {subscript) in the field., TIf it 1is
necessary to (re)}GET an element that is to the
left of the current element, the record may be
{re) REAL, resetting all of the internal current
element counters t¢ the first element of the
fields., If it is necessary to maintain field
elements in some order depending on their mainline
values (rather +than the order in which they are
entered), the following technique may be used (for
ascending sequence):

v1.

LISTS

a.

PAGE 26

CECLARE (OLD, NEW} CHARALZTER (maxlen) VARYING;

NEW = expressicn;

BB {{ REARD FILF {(name) (p051t10n1nq);
NEXT_ELEMENT:

GET FILE iname) PFYELL (fleldname} INTO {OLD};

)}
IF LENGTH (OLD) /% 1F OLD IS NON-NULL %/
THEN DO;
IF OLD > NEW /%* GREATER THAN®/
THEN DO; /*INSERT ELEMENT */
DB ((REPUT FILE (name)
FIELT (fieldname) FROM (NEW);));
NE¥ = OLD; /% FOR EROPAGATION */
END;
GO TO NEXT_ELEMERT;
END;

DB ({ PUT FILE (name) FIELD (fieldname) FROM
{NEW) 3))3

Index Field Retrieval

DBPL/T provides a special GET TINDEX EEY statement
and the #¥YREF function for retrieval from index
records., {Such records may mnot ke explicitly
created or maintained by mainline programs). A
READ INLEX statement must have been executed to
estaklish a current reccrd of an index before a
GET IXDEX FREY or #XFEF may ke executed.

The GET INDEX ¥EY statement is used to retrieve
the index key field value from the current record
of the index,

The #YREF function calculates the number of cross
references {anchor cr subfile key elements) in the
current record {region) of the index.

The GET FIELD statement and #FIELD will not work
on index record fields. An index record RECLEN
field cannot te retrieved (it dcesn't mean much in
a spanned index). The GET INDEX KEY statement is
provided for the index key field. $XREF 1is
provided (instead of #FIFLD) for the Cross
reference field element count. The GET INDEX LIST
SET statement (see secticn VI,B kelcow) retrieves
the whole c¢ross reference 1list (instead of an
element at a time),

Qverview

PAGE 27

A "list® of keys 1is a collection of ascending
ipternal key elements in main storage, identified
by a painline list ©pointer, (The keys are
accessihle only by LBPL/I statements).

A #list pointer” is a FL/I vpointer variable
declared in the mainline, set Yty a DBPL/I GET SET
statement or LIST functicn reference, and used to
identify a 1list, A list vpointer having the PL/I
NULL pointer value identifies a null ({(empty)}
1isto

Under 0S, *main storage' for key lists consists of
a large raniomly accessible file, The 1list
pointer addresses a ccntrel tlock, held in real
cemory, which describes the list.

There are several wayvs to form 1lists (see Fiqure

1):

1. Read anchor records sequentially and vpick
keys,

2. Read subrecords seguentially from a subfile
and pick kevs,

3. Copy an index record cross reference list,
4, Copy a subfile control field.

5. Merge the sutfile control fields from a
series of anchor records specified in a
list,

6. Merge the parent keys from a series of
subrecords specified in a list,

T» Get keys sequentially from a list and pick
interesting cnes,

8. Drop the duplicate keys from a list,

9. Get internal kevs sequentially from a list
and generate internal keys for an output
list,

10. Logically comtine {AND, OR, or AND NOT)
conpatible lists,

The nurker of kevs in a list may be found, Key
elements (in external or internal form) may be
taker from a list. 1A list may te used to control
READing of ancher records. The wmainline may

PAGE 28

request and get cantrol cf any errors in the use
of lists,

Method 1: forming a list of anchor keys;3

ptr=NULL;
-=>DB((READ FILE(plex) file-pocsitionings))
{ DE{(SET FILE{plex) KEY SET(ptr) 3))

e e P TS e

the GET KEY SET may or may not be executed
depending on the result cf GET FIELD statements,
etc,

Method 2: forming a list of subrecord keys:

ptr=NULL;

-=>DB{(READ FILE (plex) SUEFILE (scfn)
i file-positionings3))
| TLDE((GET FILE (plex) SUBPILE (scfn)
{ KEY SET(ptr)3))

———— A

It is analogous to method 1,
Method 3:

DE{{READ FILE(plex) INLEX(ifn)
file-pesiticnings))

DR ({GET FILE{(plex) INDEX(ifn)
LIST SET (ptr):))

It may be used op any index,
Method U3

DE{{READ FILE{plex) file-positioningi¥})
DB {{GET FILE{plex) SUEFILEF({scfn)} LIST
SET (ptr}s3))

It copies the nulti-element control field as a
list of those subrecords in a subfile that are
dependent on a particular anchor record, i.e, a
nchain™ of related detail records. ¥ote that a
control field is essentially a stored copy of the
result of a vhole-subfile =earch for a particular
parent key value,

Method 5@
ptr2=CCLIST (plex,scfn,utrl)

It is like method 4 repeated for all the keys in a

PAGE 29

Index list with the results all CRed together; It
produces a Complete Children List,

Methed 63

ptr2=CPLYST (plex,ptr1);
or
ptr2=0PLIST{plex,ptrl);

Tt reads all the sutrecords in a list getting the
parent ey field from each one and merging the
parent keys into the output list. The Unigue
Parent lList function drops duplicate parent keys;
Complete Parent List does nct.

Method 73

ptr2=NULL;
~=«3DB{{GET LIST({ptrl} KEY <{(n)> INTG {var):})
} TLEBE((GET LIST (ptr1) KEY SET {ptr2):))

.

Where the GET KEY SET may or mav not be executed
depending on the "var" value, Method 7
essentially handles a special case of method 1
when the "file-positioning™ would be governed by a
given list and only the key field would be gotten
to determine selection: for such a case, method 7
is far more efficient becavse no record level data
base I/C is needed,

Method 8B:
ptr2 = ULIST(ptrt);

It efficiently produces a new list of unigue keys
{(no duplicates) without any record level data base
I/0.

Method 9:

DB{{SFT LIST({ptr2) SIZE(dinm)
1IKE LIST{ptr1};})
-=«>DR({GET LIST{ptrl) INTERNAL KEY
i INTO (var}3))
{==>DB({PUT LIST{ptr2) INTERNAL KEY
il FRO#® (exvr);3))

It is a very special ©purgose variation of method
7. It works with unconverted external key values,
If the inner Jlocp is used, it 1is possible to

B.

PAGE 30

generate more than one key for each GET KEY.
Since the output list may receive a multiple or a
fraction of the nurber cf keys in the input list,
a size dimension nmust ke supplied ip the SET LIST
LIKE LIST statement estimating the minimum number
of output keys,

Method 10:

‘I'

ptr3=LIST({ptr?,7E?,ntr2);

The LIST functior focrms a nrew list in main storaqe
from twc compatible lists in main storage. The
two argument lists remain accessible €for further
combination or other use. The LIST function is
used in retrieving for ccomround gueries. Given
two lists, A and B, the 1LIST operations provided
are illustrated in Figure 2, "Venn Diagram.™

fhen more than two lists bhave to be combined, the
mainline may wuse one of the fcllowing technigues
{where P is the resunltant intersection list):

T
T2 Y
DB {((FREE LIST {(T1))):
R = LIST (T2, '&', IL});
DB {(FREE LIST (T2)));:

LIST (&, 'E', B);:
LIST (T1, *&', C

HH

/*IF DESTRED HERE*/
/¥I¥ DESIRED HERE*/

A second possible technique is:

® = LIST (A, 'E', B}:
R = LIST (R, ‘&', CO);
B = LIST (R, '&', D};

A third possible technigue is:

B = LIST {(LIST (A, *&*, B), '&', LIST (C,
e, DY)

The last two techniques do not retain intermediate
lists,

List Statements and Functions

#LIST is a PL/I function provided £for obtaining
the nunkter of keys in a list, For exanmple, if L
is a rointer didentifving a 1list and S 1is a
varying-length character string, the following
DOo-group would be wvalid:

PAGE 31

DO I = % TO #LIST (L)3
DB {{ GET LIST (L) KEY INTO {S);))3
PUT SKIP LISTY (I, S5);
EuD;

If it is merely desired to determine if a list has
any elements cr nct, the following techniaue is
nore efficient than a #LTIST function reference:

IF L -= NOIL THEN /* LIST HAS MORE THAN ONE
ELEMENT */;

The GET IIST KEY statenent moves a list element
key from a list tc the vusger's receiving string.
any conversion from internal to external form is
done automatically. The GET LYIST TINTERNAL KEY
statement never converts the list element key
value,

The REAL statement wWith the LIST file positioning
option is used to vead the anchor or subfile
record with the next element of a list as its key.
It is more efficient than GET LIST ¥EY; READ hy
KEY because the internal form of the key element
is available for use without conversion.

There are two independent "current elements of a
list": the one rost recently obhtained by a GET
LIST KEY statement and the cne mcst recently used
ty any READ statement under centrol of the LIST,
A key may be referred to sequentially forwards or
tackwards or by its yposition (subscript) in a
list. The GET or REAL current element counter may
be reset by a GET 1IST ¥EY{0}y or a BREAD LIST
KEY (0) statement resnectively.

The SET 1IST, LIKE I1IST, and PUT LIST INTERNRL KEY
statements are for allocating and gposting 1lists
for special purposes.

An explicit FREE LIST statement frees the storagqge
and NULLs the pointers for the lists specified, &
general FREE LIST statement frees all current
lists but does not NULL any pointers.

The O©ON LISTERROR statement is used to estahlish a
user's list exception routine in the mainline to
which the list precessing rcutines return vhen an
exceptional list condition CCCUrs (€9, ,
atteppting to combine incompatible lists). Use of
the statement is optional and several ON LISTERROR
statements may he executed in a program.

Vi1,

PAGE 32

4 "list exception reoutine" must begin with a
statement label (the sane latbel identifier
specified in an ON statement), PL/I {or DBPL/I)
statements may be written following the label to
handle the excegtional condition, These
statements may reference a kinary integer field
named LISTERR.ONCOLE (declared auntormatically by
the DB preprocesscr) for assistance in determining
the exceptional condition,

R list exception routine may ke terminated in any
manner; no provisior is made for returning to the
function reference that rTaised the exceptional
conditicn.

RULES AND SYNTACTIC DESCRIPTICNE

The syntax ncotation used in this manual is a subset of
that used 3in the 0SS PFL/I FKeference Manual (Form
C28-8201-0) and specified in Section A thereof,

1. A notation variatle is shown in lower case
letters, hveghens and, possibly, a digit, 2All such
variables shown are defined in this manual either
syntactically or serantically,

2, A notation constant denotes the literal occurrence
of the characters shown, It consists either of
all capital letters or c¢f a special character such
as a c¢olon, percent sian, rparenthesis, comma or
semicolcn,

3, Braces, {} , d2note that a choice is to be nade,

4, Corner trackets, <> , denote options. Anything
enclosed in brackets may appear one time or may
not appear at all.,

S. The vertical stroke, { , indicates that a choice
is to be made,

6. An ellipsis, ... , denotes that the contents of
the preceding brackets may optionally cccur more
than once in succession.

PAGE 33

*The CCLIST Function?

Complete Children LIST bailds a list of subrecord keys from
a given parent key list, for a particular sukfile, and
returns a pointer value identifying the new list to the
point of invocation, The new list is the complete list of
dependent subrecords {children) formed by merging the parent
record?s subfile control field 1lists, Any tpreviously
current record and subrecords that were updated will be
transmitted to the data hase. The record identified by the
last thighest) key in the given 1list will repmain as the
cument (but nct lccked) rTeccrd; any current subrecords or
index records will repmain current, The READ <cursor of the
given list will be reset,

Reference:
CCLIST {file-name, ctlfield, parent-list-rointer)

A CCLIST function reference is used as or in an expressiong
it is not to te a subargqument in a DB prevrocessor function
reference, The user may not declare any attributes for the
CCLIST functions the fcllowing statement will be generated
automatically:

DECLARE CCLIST ENTRY {,CHAB({B),PTR} RETURNS (PTR}:
Arqimentss:

file-name: specifies the data base file from which parent
records are to be transmitted. It may not bLe an OUTPOUT
file, I€ the file is nc¢t oren, it will be opened
autonmatically., The *'file-nanme' must be used in at least one
DREL /T statement elsewhere in the rrcgram,

ctifield: is an expression that specifies the name of the
subfile control field. The value of the expression is
comwwerted to a character strinag, if necessary, the first
eight characters of which identify tke centrel field.,

parent-list-pointers must be a rcinter expression that
identifies a list in main storage of parent keys from the
data base accessed by 'file-name', It rust have been set
when the CCLIST function is invcked.

Result:

The value returned by the CCLIST function is a pointer
identifying the newvw cormplete children list, The new list
¢yill be in order of ascending internal subrecord key wvalues
vithout duplicated values, If none of the parent records
have any dependent subrecords in the subfile, a NULL pointer
value will te returned.

PAGE 314

'"Ths CLOSE Statement?

The CLOSE
name from
assoclated
erased,

General Fo

statement closes a file ty disassociating a file
the self-describing data set with which it was
by an OPEN., It may also specify that the file be

rmat:

CLOSE FILE {file-nanme) <ERASE> <,FILE{file-name)

<ERAS
Syntax Rul

1,

2,

General Bu
1.

2,

3.

4,

Se

E))I..:
es:

The CLOSE statement must be a suvhargument in a DB
preprocessor function reference,

Several files car be closed by one CLOSE
statement,

less
A closed file can be reorpened,

Closing an unopened file, or an already closed
file, has no effect unless ERASE is specified.

If a file is pot clesed hy a CLOSE statement, it
is avtomatically closed at the completion of the
program in which it was opened,

If the current record and/¢er subrecords were
LOCATEd or updated, c¢losing will cause them to be
transmitted +to the data thase, unlocked (if
lockedy, and disestablished as the current
record{s) of the file,

The ERASF specification causes the file ¢to be
erased and uncatalcgued. If the file is a
descriptor fila, the descriptor reqgion is erased,
If¥ the file is an anchor file, the whole data base
but not its descriptors is ¢rased. If the file is
an associated file, a subfile or an index file, it
is erased independently, ERASE ies ¢nly valid for
an UPDATE file,

PAGE 35

‘The CPLIST Fanction?

Corplete Parent LIST builds a complete list of parent record
keys from a given subrecord {children) key list and returns
a pointer value identifying the new list to the point of
invocation, The new list has the same number of parent keys
as the number of subrecord ID keys in the given 1list,
Parent keys will te repeated if mcre than one of the given
subrecord keys are dependent on a particular parent
record. The subrecord identified bhy the last (highest) key
in the given 1list will remain as the current (hut not
locked) subrecord of that =ubfiles anv current or index
reco rds or subrecords of other sutfiles will remain current.
The READ cursor of the given list will be reset,

Reference:
CPLIST {file-nrame, child-list-pcinter)

2 CPLIST function reference is used as or in an expressions
it is not to be a subargument in a LE preprocessor function
reference, The user may noct declare any attributes for the
CPIIST function: the following statement will be generated
antomaticallys

DECLARE CPLIST ENTRY({,PTRY RETUFY¥S (PTE)}s
Argumentss:

file~namesspecifies the data tase file from which subrecords
are to be transmitted, It ray not ke an OQUTPUT file, If
the file is not open, it will te opened automatically. The
file~name must te used in at least one DRFL/T statement
elsevhere in the progqran,

child-list~pointer: must be a fFointer expression that
jdentifies a list in main storage of subrecord kevs from the
data tase accessed hy file-name. It must have been set when
the CPLIST function is invcked,

Result:

The valne returned by the CPLIST function dis a pointer
identifying the new complete parent list. The new list will
be in order of ascending internal parent key values and may
have repeated values. If the qiven subrecord list is null,
a MNMILL pointer valune will te returned.

‘The DB Pr

DB analyz
corpilatio
stat ements
comments m

Reference:
<labe

1.

2,

3.

4.

5.

6,

Argument:

1.

2. .

PAGE 36

eprocessor Functiont

es a DBEPL/I data base access statement during
n and generates, in its place, suitable PL/T

for communicaticn with DEBAC, Diagnostic
ay also be generated,

1:>. « « B {{<<1label: ... subargument > ,,.)}

One % 1INCLUDE (DE) preprocessoer statament nust
have been executed ky the FI/I compiler hefore any
DB preprocessor function reference is made in a
compilaticn,

Several DB preprocesscr function references mav be
made in a compilaticn,

A DB preprocessor function reference nay be rade
only between PL/I statements.

¥hen a single DBPI/I statement is to be used as
the THEN=-unit or ELSE-unit of a PL/I IF statement,
the unit must bhe a PL/I DO-END group enclosing the
DB preprocessor function reference.

One or more label prefixes may precede a DB
Preprocessor functicn reference. They will
identify the first execntaltle statement generated
for the first subargument.

One FINISH statement pust te executed by the PL/T
compiler as the last sutarqument of the 1last DB
preprocessor functicn reference after all other DB
preprocessor function references in a
compilation.

The arqument of a TP greprocessor function
reference is a character string delimited bv
double enclosing rarentheses, ' Several
subarquments can agpear in the argument, Each
must be a data base access statement having its
own terminating sesmicclon. Blanks and comments
may be used freely, as in PL/I, but no PL/T
statements are permitted,

One or nmore latkel prefixes may precede a
subargurent, They will identify the first
executatle staterent generated for the

PAGE 37

subargument.

PAGE 38

*The DUPLIYIST Function?

DUPL IST builds, in dynamically allocated main storage, a
compressed copy of a 1list cf keys and returns a pointer
value identifving the new list to the point of invocation.

Reference:
DUPLIST(list-pointer)

A CUPLIST function reference is used as or in an exgressions
it is not to Fe a subarqument in a LB preprocessor function
reference. The user rmay not declare any attributes for the
DUFL IST function:; the follcowing statement will be generated
antomatically:

CECLARF DUPLIST ENTBRY{(POINTER}Y FETUENS({POINTER):

Arqument:

list~pointer: must be a pointer expressicn that identifies a
list of keys in main storage. It rust have been set when
the DUPLIST function is invoked,

Result:

The value returned by the TUOPLIST function 1is a pointer
identifying the compressed list copy. A compressed list has
none or more list segments of raximum size followed by the
last or only list segment allocated to exact length for the
rerpaining keys and all seqgments are exactly filled; thus, it
occupies the least possible main storage.

PAGE 39

'*Tte #FIFLD Function®

BFIELD calculates the nunber cf elements in a field in the
current record or subrecord of a file and returns it to the
point of invocaticn.

Reference:
#FIELD (file-name, field-nanme)

A #FIELD function reference is used as cr in an expressions
it is not to he a subargument in a ILF preprocessor function.
reference., The user mav nct declare any attributes for the
#FIELD function; the following statement will be generated
auntomatically:

DECLARE RFIELD ENTRY (,CHARACTEF (R)} FETURNS (FIYED
BIN(3N):

Arquments:

file-name: identifies a data base file, It may not be an
oUTPUT file., A current recerd or sultrecord of the file or
a subfile mnust have bheen established ty a DBEPL/I READ
statement when the #FIELD function is executed, Several
#PIELD function references may tre executed on a current
{sub) record of a file.

field-name: is an expression that specifies the name of the
data base field tc bte examined., The value of the expression
is converted to a character string, if necessary, the first
eight characters of which identify the field, 2Any field may
be exanined.

Result:

The value returned by the #FIELD function is a Dbinary
integer of npaximum precision giving the number of elements
in the field in the current (subk)record of the file. If the
fi€eld has a null value, a zerc value will bhe returned.

PRAGE 40

'*The FINISH Statement®

The PINISH statement causes the TF cgreprocesser tc¢ conmplete
its analysis of all data base access statements and its
gemreration of suitable PL/I statements, 2 RETURN Statement
will be qenerated which will terminate execution of the
procedure., A CLCSE is also generated for those file-names
utilized by the compilaticn, Diagnostic comments may also
be generated.

General Format:
FINTISH:
Syntax Rule:
One FINISH statement must be used after all other data
tase access statements in a cerpilation, It must be

the last subarqument in a DE preprocessor function
reference,

PAGE #1

*The FREE LIST Statement!?

The FREE LIST statement frees rain stcrage previously
dynamically-allocated for cne cr BOTE lists of
(cross~reference) keys.

General Format:

FREE 1LIST <(list-pointer<,list-pcinter> ...)>;

Syntax Rules:

1.

2,

The FREF LIST statewent must be a sutargument in a
DB preprccessor function reference.

Several lists may be explicitly freed by one FREE
LIST statement,

General Rules:

1.

2,

If a list-pointer is explicitly specified, it must
be a pointer expression that identifies a list of
keys in main storace. Tt must have been set when
the FREE LIST statement is executed.

A If the value of the list-pointer is NULL, no
action will be taken for that list pointer.

b, If the value of the list-rointer is not NULL,
the dynamic main storage for the list of keys
identified by it will te freed and the
list-pointer will be given a ¥NULL vointer
value,

Ce. FREIE LIST will ignore a tointer which
addresses a 1list which has been posted in
SETAB and assigned a set number, No action
will be taken,

If no list-pointer 1is explicitly specified in the
FREE LIST statement, all dynamic list storage will
be freed. The user?s list pointers are not given
NULL values; it is the user's responsibility not
to use them for list identification until they are
reset, If no dynamic 1list storage has been
previously allocated, this opticn of the FREE
LIST statement will have no effect.

PAGE 42

*The GET FIELD Statement?

The GET FIELD statement moves a data element value from the
current record or subrecord of a file to the user's
receiving field; it may cause the value to be converted fron
an internal form to a displayvy form.

General Format:

CET FILE (file-name) FIELD (field-name <, field-named> ...)
INTO {variabkle <, wvariable 2 ... }3

Syntax Rules:

1. The GET FIELD staterment must te subarqument in a
DB preprocessor function reference,

24 Several data element values can bhe wmoved by oOne
GET FIELD statement, In this case, a
corresponding variable must be specified for each
field name,

General Rules:

1. The data element value will be taken from the data
base file specified in the FILF clause, It nmay
not ke an QUTPUT file,

.8 A current record or sutrecord of the file or a
subfile must have been estaklished by a READ
statement when the GET statement 1is executed,
Several GET FIELLD statements may te executed on a
current {sub)reccrd c¢f the file,

3. The field-name is an expression that specifies the
nanme of the data base field from which the data
e¢lement value is tc te cobtained, The value of the
expression is converted to a character string, if
necessary, the first eight characters of which
identify the €field. TIf the user who executes the
GET FIELD statement i= mct the owner of the file,
the field~name may not specify a field that the
owner has noct authorized the user to GET.

a. If the field is not suhdivided into elements,
the data element value {possitly null) will
be taken from the field in the current record
of the file,

ba If the field is a multiple-element field, the
data element value will te taken from the
next element of the field, 1in left to right
order, Ffollcwing the element taken by the

. u b

PAGE 43

previous GET cf the FIELD of the current
record of +the file, If there has been no
previous GET of the FIELD since the record
was READ, the leftmost element 1is taken
unless the field is null, in which case, a
null element valve will bLke generated. If a
previous GET of a FIFLL since the record was
REAL +took the last ({rightwest) element, a
null value will be generated,

The variable in the INIC <clause specifies the
user's receiving field, It must ke the identifier
of a varving length character string variable
declared ty the user. The internal form of the
data element value will be taken as a varving
length character string (cf zero length, if the
value is null), ccnverted to display €form and
assigned to the variable. If the length of the
displavy form of thre value exceeds the
user-declared maximum 1length of the variable, the
value will te truncated and an error condition
raised.

PAGE 44

"The GET INDEX KEY Statement®

The GET INDEX XEY statement moves the kev value from the
current record of an index to the user's receiving field; it
may cause the value to be converted from an internal form to
a display form,

General Format:
GET FILE {(file-nare) INDEX (ipndfield) EKEY INTC {variable);
Synt ax Rule:

The GET INDEX REY statement must be a subargument in a
LB preprocessor function reference,

General Rules:

1. The FILE clause specifies the data base file fronm
which an index key value is tc te taken. It may
not te an OUTIPUT file.,

2e The INDEX clause specifies the index file fronm
which the current index key value is to be taken.
The indfield expression value is converted to a
character string, if necessary, the £first eight
characters of which identify the indexed field.

3. A current rtrecord of the index must have been
established by a READ INLEX statement when the
GET INDEY KEY statement is executed.

u, The variable in the INTC clause specifies the
user's receiving field, It must be the identifier
of a varying 1length character string variable
declared by the user. Tte internal form of the
index key value will be taken as a varying lenqgth
character string, converted to display form and
assigned to the variable. Tf the length of the
display form of the value exceeds the
user~declared maximum 1length of the variable, the
value will be truncated and an error condition
raised,

PAGE 45

"The GET XEY SET Statement?

The GET KEY SET statement moves the internal key value from
a carrent record or subrecord of a file to a list of kevs in
dyranmically alleccated main storage and sets a pointer
idepntifying the 1ist or extends an existent list,

zeneral Format:

GET FILE {(€file-nare) <SUBFILE {ctlfield)> KEY SET
{list-pointer) s

Syntax Rule:

The GET KEY SET statement must be a sutargument in a DB
preprocessor function reference,

General Rules:

1. The FILE clause specifies the data tase file from
which a key value is to be taken, It may not be
an QUTPUT file,

2a, If no SUBFILE clause 1is present, the internal kevy
value will he taken frcm the current root
recaord,

k. A SUBFILE clause srecifies that the internal key
value frem a current sutreccerd is to be taken,
The ctlfield expression value 1is converted to a
character string, if necessary, the first eight
characters of which identify the control field.

3. A current {sub)reccrd must have been established
by a READ or READ SUBFILE statement when the GET
KEY SET statement is executed,

4. The list-pointer in the SET clause specifies the
user*s pointer didentifying the list of kevs in
main storage. Tt rust be the identifier of a
pointer variable declared by the user.

4a, If +the wuser assigns the NUIL valuve to his
list-pointer before executing the GET KEY SET
statement, main storage will be dynamically
allocated automatically for a new 1list, the key
value will be mnoved there from the current
(sub)record, and the list-pointer value will be
set to identify the 1list in main storage. The
list remains allocated in main storage until the
user executes a FREE LIST statement,

b,

PAGE 46

Otherwise, the list-pointer should identify a list
of keys in main storage to vhich another
compatitle key value 1is tc be appended. It must
have been set (bvy ¢the usger assigning NULL and
executing a GET KEY SET statemnent as described
above) vwhen this GET KEY SET statement is
executed, The key valve will be moved from the
current ({sut)record. The list-pointer will be
unchanced.

PAGE 47

*The GET LIST INTFRUAL KEY INTO Statement!?

The GET LIST INTERNAL KEY INTO statement increments the
internal GET cursor of a 1list of keys in main storage
identified by a list pointer and roves the indicated key
value in internal form to the user's receiving field.

General Formats:
GET LIST {list pointer) INTERKAL KEY INTC {(variable)
Syntax Rule:

The GET LIST INTERNAL REY INTC statement pust be a
subarqument in a DR preprocessor function reference,

General Rules:

1. The list-pointer must be a pointer exrression that
identifies a 1list of %¥eys 1in main stcrage from
which the next kev value is to be taken. It must
have bheen set when the GET LIST INTERNAL REY INTO
statement is executed. 1In the exceptional case of
a list pointer having a NULL pointer value, a null
string value will he generated,.

2. The internal GET cursor of +the list will be
incremented to indicate that the npext element of
the 1list, in order of ascending internal key
values, is current and w~ill be taken, (If the
internal GET cursor was reset, the element having
the lowest internal key value is current and will
be taken., If the internal GET cuyrsor was on the
last element ({highest internal key value), the
cursor will be reset and a null string value will
be generated.)

3. The variable in the TNTC <clause specifies the
user's receiving field, It most bte the identifier
of a varying length <character string variable
declared by the user, The internal form of the
key wvalue will be taken as a varying length
character string (cf zero length on end of list)
and assigned without formatting to the variable,
If the lenagth of the internal form of the value
exceeds the user-declared rpaximum length of the
variable, the value will be truncated and an error
condition raised,

PAGE 48

*The GET LIST KEY(0) Statement?

The GET LIST KEY{0} statement resets the internal GET cursor
of a list of keys in main storage.

General Format:
GET LIST {list-pointer) KEY(D):
Syntax Rule:

The GET LIST REY{(0) statement must be a subarqument in
a DB preprocessor functicn reference.

General Rules:

1. The list-pointer must be a pointer expression that
identifies a list of keys in main storage whose
GET curscr is to be reset, The list-pointer nmust
have been set when the GET LIST EKEY {0) statement
is executed, In the exceptional case of a
list-pointer having a NOLL pointer value, no
action will occur and no error condition will be
raised.

2, The dinternal) GET cursor of the list will be reset
{as it was when the list was built),

PAGE 49

*The GET LIST KEY INTO Statement?

The GET LIST XKEY INTO statement increments or sets the
internal GET cursor ¢f a 1list of %¥evys in main storage
jdentified by a list pointer and mcves the indicated kev
value to the user's receiving field; it may cause the value
to be converted from internal to disrlay form.

General Format:
GET LIST (list-pointer} KEY <{rel-key)> INTO {(variable);
Syntax Rule:

The GET ILIST KEY INTO statement must bhe a subargument
in a DB preprocessor function reference.

General Rules:

1. The list-pointer must be a pointer expression that
identifies a 1list of %eys in wmain storage from
which the key value is to he taken, It pust have
been set when the GET LIST KEY INTC statement is
executed. In +the exceptional case of a 1list
pointer baving a NUIL pointer value, a null string
value will be generated,

2a, If no rel-key is srecified, the internal GET
cursor of the list will be incremented to indicate
that the next element of the list, in order of
ascending internal key values, is current and will
be taken, (If the internal GET cursor was reset,
the element having the 1lowest internal key value
is carrent and will he taken, If the internal GET
cursor wvwas on the last element the cursor will be
reset and a null string value will be generated.)

k. If a rel-key exrression is srpecified, its value
#ill be converted, if necessary, to a fixed binary
integer of maximum precision.

If rel-~kevy bhas a negative value, such as -1, the
internal GET cCursor of the 1list will be
decremented to indicate that the previous element
of the list, in crder of internal kev values, is
current and will be taken, (If +the internal GET
cursor was reset, the element havino the highest
internal key value is current and will be taken,
If +the internal GET curscr was on the first
element, the cursor wil}l be reset and a null
string value will be generated.)

If rel-key has a positive value, the internal GET

3.

PAGE 50

cursor of the 1list will te set to indicate that
rel-key the relative element <cf the 1list is
current and will be taken, (If rel-key is zero or
greater than the nunmter of keys in the list, the
carsor %ill be reset and a null string valne will
be generated.}

The variable in the 1INTOC clause specifies the
user!'s receiving field, It must be the identifier
of a varving length character string variable
declared by the wuser. The internal form of the
key valwe will be taken as a varying length
character string ccnverted to display form and
assigned to the variable. If the 1length of the
display form of the value exceeds the
nser~declared maximum length of the variable, the
value will be truncated and an error condition
raised.

PAGE 51

"The GET LIST KEY SFT Statement?

The GBET LIST KEY SET statement moves the current internal
key value from a list of keys identified by a list pointer
to a new list in dynamically allocated main storage and sets
a rointer identifyving the newx list ocr extends an existent
15.51’1.

General Format:
GET LIST (list-pointer) ¥KEY SET (new-list-pointer):
Syntax Rule:

The GET LIST KEY SET statement must te a subarqument in
a DB preprocessor function reference.

General Bules:

1. The list-pointer must be a pointer expression that
identifies a list of kevys in main storage having a
non=-zer¢ GET cursor indicating a current kev,

2, The internal kXey value will be taken from the
current element of the 1list indicated by the
internal GET cursor, The GET cursor will be
unchanged,

3. The new-list-pointer in the SET clause specifies
the user®s rointer identifying the new list of
keys in main storage, It must ke the identifier
of a pointer variable declared bv the user.

Ja. If +the user assigns the N0D1LI value to his
new-list-pointer tefore executing the GET LIST KEY
SET statement, main storage will he dvnamically
allocated automatically for a new list, the key
value will be moved there, and the
new-list-pointer value will he set to identify the
new list ip main storagqe. The new list remains
allocated in main storage until the user executes
a PREE LIST statement,

3b. Otherwise, the new-list~-rcinter should identify a
list of keys in main storaqe toc vwhich another
compatikle key value is tc he appended. It must
have heen set when this GET LIST KEY SET
statement is executed. The key value will be
moved and the new-list-pointer will he
unchanged,

PAGE 52

*The GET LIST SET Statement?

The GET LIST SET statement mcves a list ¢f keys from the
current record of an index cr from a subfile control field
in the current root record to dypmamically allocated main
Stcrage and sets a pointear identifying it,

General Format:

GET FILE(filename) <INLEX{indfield)>LIST S¥T (list-pointer}
<SUBFILE(ctlfield)>

Synt ax Rule:

The GET LIST SET statement must te a subarqgument in a
DB preprocessor function reference,

General Rules:

1. The FILE clause specifies the data base file fron
which the list of kevs is tc be taken, It may not
be an OUTPUT file.

Za, If an INDEX <clause is specified, a current index
record rust have heen estatlished bty a READ INDEX
statement when the GET INDEY LIST SET statement is
executed, The INDEX clause specifies the index
file frcm which the list of (cross-reference) keys
is to be taken, The indfield exrression value is
converted to a character string, if necessary, the
first eight characters of which identify the
indexed field.

2h, TIf a SUEFILF clause is specified, a curremnt root
record must have been estatlished by a READ
statement when the GET 1IIST SET statement 1is
executed, The ctlfield expression value 1is
converted to a character string, if necessarv, the
first eight characters c¢f which identify the
control field from which the 1list of keys
{children) is to he taken, If +the user vwho
executes the GET SUBFILE LIST SET staterpent is not
the owner of the file, the ctlfield may not
specify a contrel field that the owner has not
authorized the user to GET.

2c., If neither an INDFY nor a SUBFILE clause is
specified, the FILF must he an INFUT file opened
with & TITLE for inderendent access to a
particular inverted index file and a current
record must have been estatlished by a READ
statement when +t+he GET 1IST SET statement 1is
execnted, The list of (cress-reference) keys will

3.

PAGE 53

be taken,

The list-pointer in the SET clause specifies the
user's pointer to be set to identify the list of
keys in main storage. It must be the identifier
of a pointer variable declared by the user.

a. If the 1list of keys £field of +the current
rececrd is null, the 1list-pointer will be
given a NULL gcinter value. {This occurs for
the SUBFILE case when the ccntrol field is
null indicating nc cswvbordinate {(children)
sabrecords,)

b. Othervise, main storage will be dynamically
allccated autcmatically for the list, the
list of kXeys will be moved there from the
current record, and the list-pointer value
will be set to identify the 1ist in main
storage, The list remains allocated in main
storage until the user executes a FREE LIST
statement,

‘*The GET R
The GET RE
fom fronm
receiving

Genaral Fo

PAGE 54

ECORD Statement?t

CORD statement moves a physical record in internal
the current record of a file to the user's

field.

rmat:

GET FILE (file-name} ERECCRD INTO (variable):

Syntax Rul

The G

es

ET RECORD statement must be a subkarqument in a DB

preprocessor function reference,

General Rules:

Te

2.

3.

The physical record wiil be taken from the current
record of the file specified in the FILE clause,
It must be an UPDATE or INPUT file owned by the
nser who executes the GEY BRECORD statement,

A current record of the file must have been
established by a READ statement when the GET
statement is executed, Several GET statements may
bhe executed on a current record of the file,

The variable in the INTO clause specifies the
yser's receiving field. It must be the identifier
of a structure or fixed-length character string
variable declared by the user, The internal
self-defining physical record will be moved into
the variable without any ccnversion., No receiving
field length checking will ke done. (A GET FIELD
*RECLEN? statement ray he used for this purpose,)

PAGE 55

*The % INCLUDE LTYSRMAC {DB) Preprocessor Statepent?

The % INCLUDE LISRMAC (DB) rregrocesscr statement causes the
text of the DB preprocessor functiocn tc he taken from the
system source litrary during coprilation, incorporated in
the source program and activated.

General Format:
¥ INCLUDE LISRMAC (DB);
Syntax Rule:

Only one % INCLUDE DE preprocessor statement mav be
used in the source text for a compilation, It must
immediately follov the beginning PEROCEDURE statement,
before any other statements, 1if the compilation
contains DB greprocessor functicn references for data
hase access statements,

PAGE 56

"The LIST Function?

LIST derives a nev list of (cress-reference) kevs from two
given lists of keys and returns a rointer value identifving
the new list to the point of invccation., The new list may
be the union or intersection of the given 1lists or the
sutlist of the first given list excluding the second.

Reference:
LIST (list-pointer~-1, operator, list-pointer-2)

A IIST function reference is used as cor ir an expressions it
is not to be a subargument in a LR preprocessor function
reference, The user may not declare any attrikutes for the
LIST function; the following statement will be generated
automatically:

DECLARE LIST ENTRY {POINTEFR, CHARACTER(1), POINTER)
RETURNS{POINTER) 3

Arqupents:

Each of the two 1list-pointer arguments mtst be a pointer
exrression that identifies a 1list of keys in main storaage,
Bach must have been set when the 1IST function is invoked.
The lists of keys identified must be compatible (havina the
same internal key element length, etc.).

The operator arguwent is an expressicn that specifies the
list operation +tc¢ 2erive the new 1list, The value of the
operator will te converted, if necessary, tc a one-character
string. The value nmust be:

logical OR, ',?', specifying the union,
logical AND, &%, specifying the intersection, or

ninas sign, *-", specifving the sublist of the first
list excluding the second list,

Result:

The value returned by the LIST function is a pointer
identifying the new list. The new list will be in order of
ascending internal kev values withcut duplicated key values
{unless there are duplicates in one of the argument lists).
If the new list is nuell, the value returned may be assianed
to one of the argument 1list pointers; however, the argqument
list would then be lost to the mainline (unless the user had
assigned its vrpointer wvalue tc¢ ancther pointer previously)
and could not be explicitly freed {(but FREE LIST; weculd free
it and all other lists).

PAGE 57

*Tke #LIST Functicnt

#LIST calculates the nanber of {crcss-reference) keys in a
list of keys identified by a list pointer and returns it to
the point of invocation,

Reference:
#LIST (list-pointer)

A #1IST function reference is used as or in an expressions
it is not to re a subarqument in a DE preprocessor function
reference, The user may not declare anvy attributes for the
#LIST function:y the following statement will be generated
automatically:

DECLARE #1IST ENTRY {PCINTER) RETORNS (FIYED
BINARY (31)) 3

Arqument:

The list-pointer argqument rust be a pointer expression that
identifies a list of keys in main storage., It wmust have
been set when the #LIST function is invoked.

Resnlt:

The value returned by the #1L.IST function is a binary integer
of maximum precision giving the numkter of kevys in the 1list
identified by the list-fointer arqument., 1f the
list-pointer has a NULL pointer value, a zero value will be
returned,.

PAGE 58

'The LOCATE Statement?

The locate statement, which aprlies to CUTPOT or DIRECT
UPLATE files, causes formaticn o¢f a mnew current record
having a key field and having all cther fields null; it may
also cause transpission of the previcusly current record to
the data base,

General Pormat:
LOCATE FILE (file-name) REYFROM {expression)s
Syntax Rule:

The LOCATE statement must be a subargument in DB
preprocessor function reference,

General Rules:

1. The PFILE clause stecifies the data tase file to
which the tecord is to te subsequently
transmitted, It must te cwned by the user who
executes the LOCATE statement. It may not bhe an
INPUT or SEDUENTIAL UPDATE file.

2. If the fil=a is not <o©pen, it is opened
auntomatically.

3. The value of the expressicen in the ¥EYFROM clause
is converted to a varving length character string,
if necessary, validated and/cr converted to an
internal formn,

- 39 1f the file has the SEQUENTIAL OUTPUT
attribotes, the internal kxey is checked for
ascending segunence and subseguently used as
the key of the record when it is transmitted
to the data tase,

b. If the file has the L[IRECT attribute, a READ
KEY is attempted using the internal key, If
the key 1is found, a duplicate key error
condition is raised and the 1IOCATE statement
has the affect of the REAL KEY statement, If
the key is not found, it is subsequently used
as the key of the record when it is
transmitted to the data base,

4, After execution of tte 1CCATE statement,
subrecords may be IOCATEd and values may be PUT
into fields {other than the key) of the record for
subsequent transmission to the data base, which
will o¢ccur inmmediately before the nprext LOCATE,

PAGE 59

READ, CLOSE or automatic close cperation on the
file,

PAGE 69

*The LOCATE SUBFILE Statement?

The LOCATE SUBFILE statament causes formation of a new
current subrecord having a key field and a parent kevfield
and bhaving all other fields null; it also causes the new key
to be auntomatically entared inm the parent reccrd control
£ield; it may also cause transmission of the vpreviously
current subrecord of the subfile,

Geparal Forrat:
LOCATE FILE (file-name) SUBFILIE {ctlfield);
Syntax Rule:

The LOCATE SUEFILE statement must be a subargument in a
DB preprocessor function reference.

General Rules:

1. The FILE clausa specifies the data base file to
wvhich the subrecord is to te subsequently
transmitted, Tt must be cuned by the user who
executes the LOCATE SUEFILE statement, It nmay
not bte an INPUT file,

2e A current record of the file must have Lteen
estabtlished wh2n the 1LOCATE SUBFILF statement is
executed, Several LCCATE SURFIIE statements for
one or nore subfiles may te executed on a current
record cf the file,

3. The ctlfield is an expression that specifies the
name of the subfile contrcl field. The value of
the expression is ccnverted to a character string,
if necessary, the first eight characters of which
identify the contrcl field,

4, After execution of the ICCATE SUBFILE statement,
values may he PUT into fields of the subrecord for
suksequent transmission +te the data base, which
will occur immediately tefore the next LCOCATE
SUBFILE or BEAD SUBFILE on this subfile or before
the next CLOSE or automatic close on the file,

PAGE 61

*The CN Statement?

The C¥ statement specifies what action is to be taken when
an interruption results from the occurrence of the specified
error condition.

General Formats:

ON <EBRORFILE{file-name)> <SYSTEMN > 3
<LISTERECR > <GC 10 latel>

Syntax Rule:

The ON statement pyust be a suhargument in a DB
preprocessor functicn reference,

General Rules:

1. The ON statement determines how an error occurring
for ¢the specified condition 1is to he handled.
Whether the error is handled in the standard DB
fashion or by a user-surplied method is determined
by the action specificaticn in thke ON statement,
as follows:

a. If the action specification is SYSTEM, the
standard TP action is +taken, For nost
conditions, the system simply posts the
ONCCDE field and raises the ERRCR condition.
{Ncte that the standard DB action is always
taken if an interruption o¢ccurs and ©no ON
statement for the cendition is in effect,)

b. If the action specification 1is GO TO, the
user has supplied Ltis own error-handling
action at label. Ccntrol ig not transferred
to latel when the CN statement is executed:
control is transferred only when an error
results from the occurrence cof the specified
condition,

2. The action specification establisted by executing
an ON statement remains in effect unless it is
over-ridden by the execution of another ON
statement specifying an action for the sane
conditicn,

PAGE 62

*The CPEN Statement'

The OPEN

statement opens a file bty acssociating a file name

with a DATA BASE. It may alsc specify attributes for the

file,

General Format:

OPEN FILE {file-name) <TITLE {exrression)> <access>
<function>

<,FILE{file-name)}) <TITLE{exrressicn)> <access>
<fanction>>,..3

wvhere “"access" iss:
DIRECT] SEQUENTTAL

and

"fupction® is:

INPUT { OUTPUT UPDATE

Syntax Rules:

1.

2,

General

1.

2.

3.

The COPEN statenment rust be a2 subarqupent 3in a DB
preprocessor functicn reference,

Several files can be ofpened by one QPEX
statement.

Rules:

If a file is not opened by an CPEN statement, it
is automaticallvy opened wshen a READ or LOCATE
statement for the file is first executed,

Opening an already opened file bhy an OPEN
statement causes it to he closed and reorened.

If the TITLE opticn is srecified, the value of the
expression is converted tc a character string the
first eight characters of which identify the data
base to te associated with the file, TIf the TITLE
option is not specified, the file-name is taken
to identify the data base.

If no access attribute is specified, DIRECT is the
default unless a WFITE statement on the file is
used in the same compilation, thus implying the
SEQUENTIAL attribute.

If a function attribute is specified, it
determines the direction of data +transmission
permitted for the file. If no function attribute
is specified, it 1is inglied from the usage of
other data base statements on the same file in the

PAGE 63

compilation (2.9., REPUT implies OPDATE), 1If no
other data kase statements ¢n the same file appear
in the compilation, the default is INPUT. The
only user permitted to access and OUTPUT or UPDATE
file is the owner of that file.

PAGE 64

"The TUT FIELD Statement!?

The PUT FIELD statement moves a data element value to the
current record <¢r subrecord of a file for sybseguent
transprission to the Adata bases it may cause the value to be
vali dated and/or ccnverted to an internal form and it may
also cauvse a cross-reference to he automatically entered in
an index file.

General Format:

PUT FILE (file-name) FIELD (field-name<,field-named ...)
FROM {exrressicn<, exrpressiond ,..)3

Syntax Rules:

1. The PUT FIELD statement must be a sulargument in a
DE preprocessor functicn reference. *The READ

Statement?
2. Several data element values can te moved bv one
PUT FIELD statement. In this case, a

corresponding expression must te specified for
each field-napme.

Gereral Ruoles:

1. The FILE clapse specifies the dJdata base file to
which the data element valune is to be subsequently
transmitted, It must be an OUTPUT or UPDATE file
owned by the user who executes the PUT statement,
It may not be an associated file or an index
fileo

2, A current exclusive record or subrecord (depending
on the field-name) of the file or subfile must
have been established when the PUT statement is
executed., Several PUT statenments may be executed
on a current exclusive (suk)record of the file.

3. The field-name is an exrression that specifies the
name of the data tase field into which the data
elesent value is to be moved, The value of the
expression is converted to0 a character string the
first eight characters c¢f which identify the
field, The field-name may not specify the kev
field of the record or anv cther read only field.
The PUT statement moves a value to a field element
that bhad no grevicus value,

A If the fiz2ld is not subdivided into elements,
it must have had a null value tefore the PpOT
statement is executed to qive it a value.

b,

6+

PAGE 65

b. If the field is a nmultiple-element field, a
nevw element will he added at the right end of
the field.

The expression in +the TFHRCHM clause specifies the
data value to be given to the field elenment, The
value of the expression is converted to a varving
length character string, if necessary, validated
andsor ccnverted tc¢ an internal form and moved
into the current record of the file, (If the data
base field elepent is variable~-length, other
fields are automatically shifted to make room.)
The varving length character strino value after
any <conversion to an internal form must have a
length greater than zero; i.e., a null string is
an invalid data value for a PUT statement,

If the data tase field tas an inverted index file,
a cross-referance of the ipternal data element
value to the key of the (sub)record will be
autoratically entered in the inverted index
file,

The {suvk)record with the nev data element value
will e transmitted to the data base when an
UDNLOCK statement for the (sub)file is executed cor
immediately before the next LCCATE or READ on the
(sub)file or immediately tefore the next CLOSE or
automatic close operation on the file,

PAGE 66

*The PUT LIST INTERNAL KEY FRCHM Statement!

The PUT 1LIST INTERNAL REY FROM statement moves an internal
key value to externd a list of keys in main storaqge,

Gensral Formats:

PUT LIST (list-pointer) INTERNAL REY FROM (expression

<,expressiond...) ;s

Synt ax Rules:

1.

2.

Genaral

1.

2.

The POT LIST INTERNAIL KEY FFCM statement must bhe a
subargument in a DB FLEepraocessor function
reference,

Several internal key values can he moved by one
PUT 1IST INTERNAL XEY FROM statement,

Ruless

The list~pointer in the IIST clause specifies the
user's pointer identifying the 1list of keys in
main storage to which the internal key value is to
be moved. It must have teen set when the POT LIST
INTERNAL XEY FROM <=tatement 1is exacuted, In the
case of a list pecinter having a NULL pointer
value, a list errcr cendition will be raised,

The expression in the FRCM clause specifies the
internal key value to hte moved to the list. The
value of the exrressicn is converted to a varying
length character string which must be the sanme
length as the list element size. If the length is
different or zero (nully an error condition will
te raised.

PAGE 67

*The READ Statement?

The READ statement caunses a parent record or a subkrecord to
be transmitted €from the data base and established as the
cumrent record of the file (cr as the current subreccrd of
a subfile); it way also cause transmission of the previously
current record {or subrecord of a subfile) ¢to the data
base.

*When READing according to a IYIST of subreccrd ID keys.
General Format:

RFAD FILE (file-name) <file-pcsiticping> <NOLOCK>;
where file-positioning may be:

KEY {expression) 1§
LIST{list-pointer) <XEY (rel-key)> 1|
PER SUBFILE (ctlfield)

Syntax Rule:

The REAL statement must be a subtargument in a DB
preprocessor function reference,

Genaral Ranles:

1. The FILE clause specifies the data tase file from
vhich the record is to te transmitted. It may not
be an QUTPUT file,

2. If the file is nct open, it will be opened
automatically unless PER SUEFILIE is specified,.

3a, If no file positioning option is specified, the
next sequential record , fellowing the one
previously read, will be transmitted. 1If the file
is newly opened, the recerd havipg the lowest
internal key value will te transmitted.

b. If the FEY file-positioning opticn is specified,
the value of the exrressicn will he converted to a
varying length character string, validated and/or
converted to an 1internal form anpd used to
determine which reccrd will be transmitted, If
the key cannot be fournd, a key error condition
will be rTaised, but the r1ecord having the next
lower internal key value will te transmitted.

c. If the 1IST file-positicning option is specified,
the file may not be an index file, The
list-pointer must te a ryointer expression that

PAGE 68

identifies a 1list ¢f anchor or subrecord keys in
main storage to ccntrol the READing. It must have
been set when the READ statement is executed.
The keys 1ip the file 1list identified wmust be
comnpatible with the internal anchor *keys of the
file, or with the subrecord Xeys of one of its
subfiles, 1In the latter case the list determines
which subfile will ke accessed for a subrecord to
be made current., In thke case of a list-pointer
having a NULL pointer value, a key error condition
will te raised and ne record will be
trapsmitted.

If the LIST clause 1is npnot followed by a KEY
clause, the internal REAL cursor of the list will
be incremented tc¢ indicate that the next element
of the 1list, in order of ascending internal kavy
values, ¥ill be used to determine which
{subyrecord will ke transmitted. (If the internal
READ cursor was reset, the element having the
lovest internal kXey value will be used. Tf the
internal READ cursor was c¢r the last element, the
cursor will be reset, a key error condition will
be raised, and no {sub} record will ba
transmitted,)

If the IIST clause 1is followed bty a KEY clause,
the value of the rel-key expression will be
converted tc a fixed tinary integer of maximunm
precision,

If rel-key has a value of zero, the internal READ
curser of the 1list %ill ke reset., No (sub)record
will be transmitted and no error condition will be
raised.

If rel-key has a negative value, such as -1, the
internal READ cursor of the list will be
decremented to indicate that the previous element
of the list, in crder of internal key values, will
be wused +to determine which {sabt)record will be
transmitted. (If the internal PEAD cursor was
reset, the element having the highest internal key
valoe will be used. If the internal READ cursor
was on the first element tle cursor will be reset,
a ey error condition will be raised, and no
{sub)record will te transmitted.)

If rel-key has a pcsitive value the internal READ
cursor of the list will be set to indicate that
the element in the rel~key positicn of the list
vill be used to determine vwhich ({sub)record will
be transmitted, (1f rel-key is greater than the

2.

4,

PAGE 69

number of keys in the 1list, the cursor will be
reset, a key error condition will be raised, and
no (sub)record will ke transmitted.)

If the PER SUEFILE file-vositioning option is
specified, the parent record of a current
subrecord will bte transmitted. The value of the
ctlfield expressicn will be converted to a
character string the first eight characters of
which identify the sukfile control field, A
current subrecord of the subfile wmust have been
estabtlished bhy a READ SUBFILE statement when the
REAL PER SOBFILF statement 1is executed, The
internal varent key field value on the subrecord
will be used to determine which record will be
transmitted,

No KEYTI0 option is provided. A GET FIELD
statement, following a READ statewment, may be
used for this purgose.

Eny READ statement referrina to an UPDATE file
vill cause the record to te 1lccked for exclusive
use unless the NCIOCK cption is specified. A
locked record cannot be READ ty any other task
until it is wunlccked. Any attempt to READ a
record locked by another task results in a wait,
Subsequent unlccking is accomplished by the
locking task through the execution of an UNLOCK,
READ, LOCATE, CLOSE or implicit c¢lose operation on
the file,

PAGE 70

*The READ INDEXY Statement?

The READ INDEXY statement causes an index record to be
transmitted from the data btase and established as the
current record of the index,

Genretral Format:

REM FILE (file-name) INDEX {(indfieldy <index-positioning>;

where index-positicning may be:

KEY {expression)

Syntax Rule:

The PEAD INILEX staterent must ke a suntargument in a DB
greprocessor function reference.

Geperal Rules:

1.

2.

3.

4a,

b,

The FYLE clause specifies the data btase file from
which an index record 1is toc be transmitted, It
may not he an OUTPUT file,

If the file 1is rct open, it will te opened
automatically.

The INTEX clause specifies the index file fron
vhich the index record is to be transmitted. The
indfield expression value 1is converted to a
character string, if necessary, the first eight
characters of which identify the indexed field,
If the user who executes the RFAL INDEX statement
is not the owner of the file, the indfield may not
specify a field that the owner has not authorized
the user to GET,

If no index~-positioning option is specified, the
file must be an INPUT file. The next sequential
index record, follcwing the one previously read,
will be transmitted, IXIf the index file has not
been previocuslv read, the record having the lowest
indexed field value will te transmitted,

If the EKEY index-pcsiticning option is specified,
the file wmav he an INEUT or UFDATE file, The
value of the expression will ke converted to a
varying lenath character string, if necessary,
validated and/or ccnverted to an internal index
key form and used to determine which index record
will be transmitted. If the key cannot he found,
a kxey error will bhe raised, but the index record

Coe

5.

PAGE 71

having the next lcwer internal index key value
will be transmitted,

No XKEYTO ottion is provided, A GET INDEX REY
statement, follewing a TREAL INDEX statement, may
be used for this purpose.

A READ INDEX statement never locks an index record
for exclusive use.

PAGE 72

*The READ SUBFILE Statement?

The READ SOBFILE statement causes a subrecord to be
transmitted from the data tase and established as the
current sukreccrd of the sutfile,

Gereral Format:

REM FILP (file=-name) SUBRFILF(ctlfield)<sutfile-positioning>
<NOLOCR>3

vhere subfile~positioning may he:
¥EY {expression)
Syntax Rule:

The READ SUEFILE statement must be a subargument in a
DB preprocessor functicn reference,

Gerneral Rules:

1. The FILE clause specifies the data lPase file from
vhich a subrecord will be transmitted, It may not
be an ODTPUT file.

2. If the file is nct copen, it will be opened
antomatically.

3. The SUBFILE c¢lause specifies the subfile <fron
which the subreccrd is +tc¢ ke transmitted. The
ctlfield expression value 1is converted to a
character string, if necessary, the first eight
characters of which identify the subfile control
field, If +the user who executes the READ SUBFILE
statement is not the cwner of the +file, the
ctlfield may not specify a subfile that the owner
has not aunthorized the user to READ.

4,a If no subfile-positioning option is specified, the
file must be an INEUT file, The next seguential
subrecord following the one previously read, will
be +transmitted., If the subfile bhas not bheen
previously read, the subreccrd having the lowest
subrecord ID key value will be transmitted.

4, 1f the KEY sutkfile-positioning option is
specified, the file mav te an INEUT or UPDATE
file., The value of +the expression will be
converted to a varyina length character string,
if necessary, converted from numeric character to
birarvy (24, 7) internal subrecord key form and
used to determine which subrecord will Dbe

q-d

S.

PAGE 73

transmitted. If the sutrecord ey cannot be
found, a key error conditico will be raised, but
the sukrecord having the next lewer internal
subrecord key value will he transmitted.

No LIST subfile-positioning option is provided for
the REAL SUBFILEF statement; the regular READ with
LIST file-positionirg may te¢ used for this purpose
because the list Aetermines if and which subfile
is to be accessed,

No subfile-positioning ogption is provided for
reading the reqion of sutrecords dependent on the
current rc¢ot record: GET SUEFILE IIST SET followed
by REAL LIST statements are very flexible for this
purpose,

No KEYTO option is provided, A GET FIELD
statement, following a READ statement, way be
used for this puryrcse.

A READ SOBFILE statement teferring to an UPDATE
file will cause the sutrecord toc be lccked for
exclusive use unless the ¥CLCCK option is
specified, A locked sutrecord cannot be READ by
any other task until it is unlocked., Any attempt
to READ a subrecord locked ky another task results
in a wait. Subsequent unlccking is accomplished
by the 1locking task through the execution of an
UNLOCK SUBFILE, READ SUBFIIE, or LOCATE SURFILE
operation on the sutfile or a CLOSE or implicit
close oreration c¢n the file.

PAGE 74

*The REPUT Statement!?

The REPUT statement replaces a data element in the current
record or subrecord of an UPDATE file for subsequent
retransmission to the data base; it may cause the value to
be validated and/cr converted to an internal form and it may
also cause a cross-reference to be automatically deleted and
ancther entered in an index file., The REFUT statement may
be used to delete a whole record or subrecord and all
cress-references te it in index files.

General Format:

REFUT FILE(file-name) FIELD{field-name<, field-named> ,,.)
FROM{expressicnd, excrression> ...);

Syntax Rules:

1. The REPUT statement must be a subargument in a DB
preprocessor functicn reference.

2. Several data element values can te replaced by one
REPUT statement, In this case, a corresponding
expression nust be specified for each
field-nare,

General Rules:

L The FILE clause specifies the data tase file to
which the data element value is to be subsequently
retransmitted, It rust te an UPDATE file owned by
the user who executes the REPUT statement. It may
not be an associated file or an index file.

2, 3 current exclusive record cf the file must have
been established when the FREPOT statement is
executed, Several REPUT statements nay be
executed on a current exclusive record of the
fileo

3. The field-name is an expression that specifies the
name of the data tase field whose data element
value is to te replaced. The value of the
exgression is converted to a character string the
first eight characters of vwhich identify the
field.

a., If the field is the key field of am anchor record,
the expression in the FROM clause pust have a null
value (zero length) and the whole root record and
all of its devendent subrecords in all sutfiles of
the FILE will te deleted,

b.

b,

Sa.

PAGE 75

If the field is the kev field of a subrecord, both
the sukrecord and its rarent record nust be
current, The exrressicr in the FROYM clause nust
have a null value (zero length) and the whole

subrecord will te deleted,

Otherwise the field-name may not specify a
read~-only field,

If the field is not subdivided into elements, its
value will be replaced, If ¢the field is a
multiple-elenent field, the element taken by the
last GET of the FIEID since the current
{subYrecord of +the file was READ will have its
value replaced. If no element was Fpind fpr tie
GET FIEID or if no GET c¢f +the FIELD of the
current {sub)record of the file wvas executed, an
error condition is raised.

The exrression in the FROM clause specifies the
new data value to he oaiven to the field elenment.
The value of the expression is copverted +to a
varying length character =string, validated and/or
converted to an internal fcrm and wooved into the
current {sub)record of +the file, (If the data
hase field element is variatle-lenagth and the new
value's length is different from the old, other
field elements are autcratically shifted as
Necessary.)

If the data base field is the key field of the
anchor record and the exrression im the FROM
clause has a null value, all cross-references to
the Xey of the parent reccrd and its dependent
subrecords will be automatically deleted from all
index files for the file specified imn the FILE
clause,

If the data base field is the 1ID key field of a
subrecord and the ecxpression in the FROM clause
has a null value, all crcss-references to the ID
key of the subrecord will be automatically deleted
from all index files for the subfile.

If the data base field has an index file, the
cross reference of the o0ld internal data element
value will be automatically deleted, and a
cross~reference of the nevw internal data element
value to the %ey of the record will he
antomatically entered in the index file.

The (sub)record with the new data element value
will te retransmitted t¢ the data base when an

PAGE 76

UNLOCK statement for the (sub)file is executed or
imnmediately before the next LOCATF or REARD on the
{(sub) file or imrediately before the next CLOSE or
automatic close operation cn tbe file,

PAGE 77

*The SET LIST LIKE LIST Staterent!

The SET LIST 1IKE IIST statement dynanmically allocates main
staage for a new list to later ccntain an estimated number
of keys, copies the key field nare and conversion routine
name etc,, from an existing list, and sets a pointer
identifying the new list.

General Format:

SET LIST {(new-list-pointer) SIZE (dimension) LIKE LIST
(list-pointer) s

Syrtax Rule:

The SET LIST LIKE LIST statement nust be a subargument
in a IB preprocessor function reference.

Gereral Rules:

1. The list-pointer in the IIRE IIST clause must he a
pointer expression that identifies a list of keys
in main storage tc be referenced <€or prefix
information such as key <€lement length etc, In
the exceptional case of a list pointer having a
NULL pointer wvalue, a NULL pointer value will be
returned.,

2. The SIZE clause specifies an estimate of the
nurber of keys that will subkseguentlv be put into
the new list. TFor example, it could be the #LIST
count of the existing list or a multiple of it,
The dimension expression value will be converted,
if necessary, to a fixed binary integer of maxinmum
precisicn and used to govern the allocation of the
first segment of the nevw list.

3. The new~-list-pointer in the SET LIST clause
specifies the user's pointer identifying the new
list of keys in main storage. It must he the
identifier of a rointer variable declared by the
user. ERegardless of its former value, it w«ill bhe
set to identify the new list of keys in main
storage. The new list remains allocated in main
storage until the user executes a FREE LIST
statement,

PAGE 78

"The ULIST Functicn®

ULIST builds a copy of a list of keys omitting duplicated
Xey values and returns a pointer valve identifying the new
list to the point of invocaticn, If The given list has only
unique key values, ULIST returns the given 1list pointer
without copying the list,

Refernece:
ULIST({list-pointer)

A ULIST function reference is used as or 1in an expression;
it is not to be a subargument in a LP preprocessor function
reference, The user may not declare any attributes for the
ULIST function: the follcwinag statement will be generated
automatically:

DECLARE G1IST ENTEY{PCINTFRY ERETURNS(POINTER) ;
Arquments

The 1list-pointer argument must be a rointer expression that
identifies a list of keys in main storage. It nust have
been set when the ULIST functicn is invoked,

Result:

The value TtTeturned by the UOLIST function 1is a vpointer
identifying the new 1list bhaving cply wunigue key values,
Hosever, if the arqument list is found to not have any
dupl icated key values, 4its list pointer is simply returned
{this always happens when the argument list is null or has
only one key).

PAGE 79

*The UNLOCK Statement?

The UNLOCK statement makes a locked current record or
sukrecord available +to other tasks for READ operationss it
may cause transmission of the current record or subrecord to
the data hase.

General Formats

ONLOCK PILE {file-name) <SUBFILE{ctlfield)>;

Syntax Rule:

The

UNLOCK statement must be a subarqument in a DB

rraprocessor function reference,

General Rules:

1.

2,

3a.

3b.

4,

5.

The FILE clause specifies the data base file whose
current record is to be gnlocked. The file must
have the UPDATE attribhute,

A record can be urnlocked only by the task which
locked it,

If pno SUBFILE clause is present, the current root
record will be unlocked,

A SOUBFILE clause, if present, specifies that the
current subrecord of a subfile is to be unlocked.
The ctlfield expression value 1is cconverted +to a
character string the first eiqht characters of
which identify the control fielad,

If the lacked current (sub) record has been updated
by a PO0T or REPUOT FIELD statement, the UNLOCK
statement will cause it to te retransmitted to the
data bhase. It ccrptinues to be the current
{sub)record of the file, tut PUT and REPHT
statements are invalid until another current
{sub)record is estatlished.

Unlocking a ({sub)record that was READ with the
NOLOCK cption or that has already heen UNLOCKed
has no effect.

PAGE BC

*Thke UPLIST Function®

Unique Parent LIST builds a list of the unique parent {root)
recrd keys from a given sub-record (children) kev list and
returns a pointer value identifying the new 1list to the
point of invocation. The new list has the same number of
parent keys as the number <c¢f subrecord keys in the given
list, Parent keys will not te repeated, even if more than
one of the given subreccord keve are dependent on a
particular parent record, A previously current and updated
sutrecord of the subfile referenced by the given list will
be transmitted to the data tase. The subrecord identified
by the last key in the given list will remain as the current
subrecord of that sub-file; anv current root or index
recmrds or subreccrds of other subfiles will remain current,
The READ cursor of the given list will be reset,

Reference:
oPLIST (file-name, child-list-pcinter)s

An UPLIST function reference is used as cor in an expression;
it is not to be a subarqument in a LE preprocessor function
reference, The user may nct declare any attributes for the
UPIIST function; the following statement will ke generated
automatically:

DECLARE UPLIST ENTIRY(,PTR) RETUENS (FTP)3
Arqumentss:

The file-name argument specifies the data base file fron
which sutrecords are to be transmitted. It may not be an
OUTPUT file. I€f the file is not open, it will be opened
automatically. The file-name mwust te vsed in at least one
DEEL/T statement elsewhere in the prograr.

The child-list-pointer arqument must te a pcinter expression
that identifies a 1list in main storage of subrecord keys
from the data base accessed by file-name., It must have heen
set when the UPLIST function is invoked.

Result:

The value returned by the UPLIST function is a pointer
jdentifying the new unique parent 1list. The pew list will
be in order of ascending internal rarent key values wsithout
duglicated values, If the given subrecord 1list is null, a
NUIL pointer value will te returned.

PAGE 81

*The WRITE Statenent?

The WRITE statement causes a phvsical record (presumably,
frem a backup filey to be transmitted to a SEQUENTIAL OUTPUT
file,

General Format:
WRITE FILE (file-name) FRCHM {variable):;
Syntax Rule:

The WRITE statement must bte a subargument in a DB
rreprocessor functicn reference,

General Rules:

1. The PFILE clause specifies the file +to which the
record iIs to be transpitted, It must be a
SEQUENTIAL OUTPUT file owned tv the wuser who
executes the HRITE statement,

2. If the file is not obpen, it is opened
automatically with the SEQUENTIAL OUTPOT
attributes.

3. The variable in thke FROY clause, declared and
filled &ty the user, contains the record to be
written, It nust have the self-defining format of
an internal variable-length record. 1Its key field
value (without validaticn or conversion) must be
higher, in order of ascending internal values,
than that of the reccrd transmitted by the
previous WRITE statement for the file, {The
record does not become the current record of the
file for purposes of PUT statements.)

PAGF 82

*The #YREF Functicn?

#XREF calculates the number cf crcss reference keys in the
current record of an index and returns it to the point of
invocation,

Reference:
#XREF {file-name, indfield)

A #XREF function reference is wused as or in an expression;
it is not to ke a subargument in a DB preprocessor function
reference, The user mav not declare any attributes for the
#XREF function: the following statement will be generated
antomatically:

DECLARF 2XREF ENTRY{,CHAR(8)) RETDRNS {FIXED BIN(3IN):
Arqumentss

The file-name identifies a data base file, It may not be an
ouTPOT file.

The indfield specifies the index file. 1A current index
tecord must have teen establicshed by a READ INDEX statement
when the #XREF function is invoked., The indfield expressionm
value is converted +to a character string, if necessary, the
first eigqht <characters of which identify the indexed
field.,

Result:

The value returned by the #YREF function is a tinary integer
of paximum precision giving the nurber of cross-references
in a current index record. If an index record is not
current, a zero value will be returned,

A LIST OF
FILEPLEX
RECORD KEYS

<>

FILEPLEX [\

INDEX

SUBFILE

INDEX

~—

A LIST OF
- SUBFILE
RECORD KEYS

FIGURE 1. FORMATION OF LISTS .

O oo~

gb

L)

PAGE 85

APPENTIX A,

FILE 1EVEL STATEMENTS

ON ERRORFILE (mfch) | SYSTEM)
{_GO TO lakel_{ ;

OPEN FILE (mfch) <TITLE (‘unfct')> { LIRECT 1 ¢ INPOT
{_SEQUENTIAL_{ | OUTPUT f{;
{_UPDATE_|

CLCSE FILE {nfcb) <ERASE>:

RECORD IEVEI STATEEENTS

LCCATE FILE {mfch) i KEYFROM (expr) |
§{_SUBFILE (scfn)_1 3

REX FILE {mfct) | forvards] <NQLOCKD>j;
{ FEY {expr) i
{ LIST {ptr) <KEY{nm)> {
{_PER SUFFILE (scfn) _|
READ FILE (mfcb) SUBFILE (scfr) | forwards | <NOLOCR>;
|_KEY {expr)_}|

REMD FILE {nfcb) INDEX (ifn)| fcrwards ¢ ;3
{

|_FREY {exrr)_

UNIOCK FILE {mfch) <SUBFILF (scfn)>;

PHYSICAL BECCRD STATEMENRTS

PAGE 86

GET FILE (mfch) RECORD INTC {var):

WRIPTE FPILE {mfch} FROM (var);

FIELD LEVEI STATEMENTS

PUT FILE (nfch) FIEID(fn<,fn2>) FROM {expr¢,expr2>);
GET FILE{afch} FIELD{fn<,fn2>y INTO (var<,var2>);

GET FILE (mfch) INDEX{ifn) KEY INTO({var):

REFUT FILE{(mfcb) FIELD {(fn<,fn2>y FRCE (expr<,exprid);

full word #FIELD {mfck, fm);

full word

I

#XREF {mfch,ifn);

DATABASE LIST STATEMENTS

GET PILE (mfcb) | SUBFILE (scfn) t LIST SET {(ptr):
{ INDEX (ifn) |
j_anchor is index _i

GET FILE {mfcb) <SUBFILE (=cfn)}> KEY SET {(ptr)s;

ptr = CCLIST {mfct, scfn, ptrl);
ptr = CPLIST (mfckt, ptrl);
ptr = UPLIST {mfck, ptri};

NCE~-DATABASE ITST STATEMENTS

ON LISTERROR | SYSTEM T

PAGE 87

{_CGC TO label_{ 3

GET LIST (ptr) KEY (0);
GET LIST {ptr) KEY <{n)> INTO {var):

GET LIST {(ptr1} KEY SET {ptr2):

Ptr = ULIST (ptrl):
Ptr = DUPLIST (ptr1);
Ptr = LIST {(ptrt,cp,ptr2)s

SET LIST (ptr2) SIZE (dim) LIKE LIST {ptril);
GET LIST {ptr1) INTFRNAL KFY INTO {var}:

PUT LIST {ptr2)} IKTERNAL KEY FRCH {exor);
Fullword = #LIST {ptr);

FREE LIST {ptr <,ptr2>):

FR¥E LIST;

op
ptr

scin

var

PAGE 08

GLOESARY

an expression resyulting in a numerical
dimension value

an expression resulting in a value
an expression resulting in a field nanme

an expression resulting in an indexed field
name

mainline FILE control hlock name

an expression Tesulting in a numerical
subscript value

list operator: *|?* or '£' or '~
pointer to a list of keys in main stroage

an expression resulting in a subfile control
field name

variable data area name

PAGE 89

TOHC C.4 - DBJOIN - JOIRING NFW USERS

I.

11,

IRTRODUGCTION

The JOIN cormand gives the NASIS Data Base
Rdministrator the ability to control the access of
retrieval users to the various files of the system. In
addition, it also allows the DER to specify passwords,
time slice values and authority codes which influence
use of the system. The infcrmation is maintained in
data set NASIS.USERIDS,

COMMANDS:
JOIN

The JCIN command establishes a new NASIS-ID which can
ke used to access the systenm, This i=s accomplished by
creating a new record in the data set and inserting the
yalues for the various data fields.,

Command: JOIN
Operands: NASISID=id,PASSNOFD=code,TS=valune,
AUTH=authority,FILES=file list

Rhere:

id
jdentifies the new NASIS-ID to be created.

Specified as: a 1-8 character alrhanuweric value
beginning with a letter,

code
identifies the password or indentificaticn code to
be uysed for this RASIS-ID.

Specified as: a 1-8 character alphanumeric
value,

Default: ©No password will be assigned,

value
indicates the magnitude of the time slice in Milli

seconds to be assigned tc this NASIS~ID under MIT
mode of operation.

Specified as: a 1-5 digit numeric value,
authority

indicates the aunthority level to te assigned to
this NASIS-ID under MIT mcde of operation,

PAGE 90

Specified as: a cne character code, '"0' for user
or 0t for DEA.

Default: *0' will ke assigned.

file list
identifies the files +to be made availatbtle to this
NASIS-ID,

Specified as: a list of fully gqualified file
names, i.e. DBA-ID.FILE-ID.,

QUIT:

The QUIT comrand resmoves a NASIS-ID from the list of
valid ids.

Conmand: QUIT
Operand: NASISID=igd

CHANGE?:

The CHANGE command is used to alter the values of one
or more of the data fields (cther than the file list)
associated with a particular NASIS-IL,

Command: CHBANGE
Operands: NASISID=id,PASS¥CED=code,TS=value,
AUTH=authority

ADD:

The ADD command 1is used to specify new files which are
to be added +to the list of files to which a given
NASIS-ID is permitted access.

Command: ADL :
Operands: NASISID=id,FILES=file list

CELETE:

The DELETE compand is vused tc¢ remove files from the
1ist of files to which a particular NASIS-ID is
rernitted access,

I11,

PAGE 91

Command: DELETE
Operandss: NASISIC=id,FILES=file list

DISPLAY:

The DISPLAY compand is nused to list the files available
to a particular NASIS-ID, aleng with the other data
values present in his identification record.

Commands: DISPLAY
Operands: NASISID=id

EXAMPLE

USER: Join john,ace,999%9,,

SYSTEM: JOHEN JQINED TC NASIS WITH PASSWORD=ACE,
TIMEFSLICE=99999 MILLESECONES, AND AUTHORITY=.

USER: add john,(safety.asrdi,safety.erts)

SYSTENM: 2dds the two files to the list of files
available teo JOHNW,

BSER: display John

SYSTEM: Display the current information maintanined
for JO4N,

USER: change john,auth=4

SYSTEM: 2applies the appropriate change,

TCHC D.2 - DESCRIPTOR EDITCR

I,

II.

PAGE 92

INTRODUCTION

The Descriptor Editor is an editing program used for
creating and updating the field descrirtors of a NASIS
Lata Base, '

INVOKING THE EDITOR

The Descriotor Editor is invecked by entering the EDIT
command and specifying the arpropriate rode of
operation and the descrirtor file tc be edited.

EDIT MODE=<CREATE|UFCATE{RESTORE>,FILE=filenane
Where:

MODE
Is Specified as:

CREATE: assumes that no data files exist and that
the user is either creating or continuing to
create field descrirtcrs.

UPDATE: assumes that data files do exist and that
the user wishes to modifyv the description of
one or more of the fields, The UPLATE mode
allows +the user to make changes that do not
affect the physical fcrmat of the recorad,

RESTORE: reads in vprevicusly, check=-pointed
descriptors and continues processing in the
CREATE mode,

FILE
Is specified as the name of +the data base
descriptors the user wishes to edit., Specified as
an alphanumeric string of at most 6 characters,
the first of which must te alphatetic,

For all modes the first letter of the mode type is a
sufficient attreviation. 1If the entered mode value is
invalid, the editor will re-prompt the user for a
correct value., If the user defavlts the pronpt for the
mode, the Editor will +terminate and contrel will be
returned to the HIT director.

EXAMPLES:

Ve The user wants +to create a nevw data Prase
wvhcse name is FECVLE,

I11.

Iv.

PAGE 93

SYSTEM: ENTER NASIS CCMMAND:
SYSTEM: ENTER:

USERz2 EDIT

SYSTEM: ENTER HMODE:
USER: CREATE

SYSTEM: ENTER FILE NAME:
USER: PECPLF

2, The wuser wants to modify the descriptors for
an existing data base whose name is PGHS,

SYSTEM: ENTER NASIS CCMMAND:
SYSTEM: ENTEER:
SER: EDYT UPDATE,EBGMS

3. The user has a checkpointed set of
descriptors for the data base GAMES which he
wishes to continue defining,

SYSTEM: ENTER NASIS CCHMMAND:
SYSTEM: ENTER:
USER: EEIT FESTORE,GAMES

LEFINITIONS

1,

2,

3.

The following definitions are used throughout this
section:

Boolean VYalues - Used +vhere ever a yes or no type
of response is required. The follcwing are
acceptatle values fcr a 'yes' type of response:

YES, Y, TRUE, T, ON, 1.

The following are acceptatle values for a ‘*no!
type of response:

N0, N, FALSE, F, OFF, C.

Fieldname - 1Is a character string of 1-8
characters lona of the fcllowing form: the first
character must be alphatetic, and the other
characters, if any, must be alphanumeric.

Routine ¥Yame - Is a character string of 1-8
characters 1long with the following form: the
first character must he alrhabetic, and the rest
of the characters, if any, nmust ke alphanumeric.

THE CREATE HCLE COMMANDS

A.

The ADD and CHANGE COFEANDS allow the user to
create a new field descripter or modify existing

PAGE

field descrirptors.

ADD (§CHANGE) FLDNAME=field-nanme,

TYPE= (FLDTYPE=field-type
<, ALTIGN=<RIGHT |LEFT>>),

FORM= (FLDFORM=field-forrat,
FLDPLEN=field-length,
ELEFMLEN=element-length,
EL¥¥LIM=clenent-number
CLUNIQUE=<YINDDY,

ROUTINES= {CONV=conversicn-rcutine,

FCRMAT=forpatting-routine,

YALIL=validation-routine,

94

VALIDARG=validation~argument),

INDEXED= (INDEX=<Y|¥D>,
IFLDNAME=field-nane

CLEXTINT=<INTERNAL{EXTERNAL>,

EXTLFN=external-lenqth,
SPANNED=CY{N>>),
ASSOCED= (ASSOL=<Y |H>,
AFLDNANE=field-nanme),
SUBFILEL=(SUBFILE=<Y N>,
SFLD¥AME=field-name),

SUEFIELD= (SUBFLD=<Y{¥>,BASEFLD=field-name,

OFFSET=cffset

<, <FILf=<*filename{ANCHOR>>

or <FILE=<ASSCCIATEDISUBFILE>,

FLCNAMEZ=field-nane>>)

¥here:

FLONANE
identifies the field tc be added,

Specified as: a valid fieldnanme,
FLDTYPE {FIELD TYPE)
identifies the cphysical format of
field.
Specified as:
A - alphanumeric character string

B - bit string

BY - 8 bit unsigned bhinary number

the

BP - packed hit string. These fields

will te placed irmediately

after

the kev field as one conticuous bhit

string,

PAGE 95

BX - hexadecimal

LY - larqge numberic ({32 kit siqgned
binaxry nusber).

5 - scientific (14 digit decimal number
®ithin the range of 10%*=75 1

10%%+75y,

SD - scaled deciral (nine digit numbers
within the range 16*%=9 :
10549y,

SN - short numeric (16 tit signed hinary
nurber).

§S - short scientific {six digit

deciral numter within the absolute
range of 10**=75 1 10%**+75),

ALIGN {ALIGNMENT)
identifies right or left alignment of the
field,

Specified as: *RIGHT' or 'R' for right
alignment and YLEFT? or 'L*' for left
alignment,

FLDFORM - (FIELL FOEMAT)
identifies the logical format of the field,

Specified as: F-FIXED, V-VARIABLE, FE-FIXED
ELEMENT, VE-VARIABLF ELENENT.

FLDLEN {F*IELD LENGTE)
indicates the length of fizxed fields or the
maximum lenaoth for cther types of fields.

Specified as: a vpositive nunmber.

(1) For the file key field, the maximun
field length is 2Es6,

{2) TFor all other fields:

{a) If FLDFORN=F, then the mnaximun
field length is 3996 minus the kew
field lengths

(b} Fcr all <cther values of FLDFORY,
the maximam length is 3994 minus
the key field length.

PAGE 96

ELEMIEN {(ELEMENT LENGTH)
indicates the raximum length of fixed and
variatle elements,

Specified as: a positive number with the
range of 1-25€ if FIDFCRM is FE: the range is
1-255 if FLDFOFM is VE,

ELEMLIY
indicates the maximur numrter of elements
allowed in the field,

Specified as: a positive number.

(1) If FLO¥CEM=FE, then the waximum number
of elements is eqgual to the field
length,

{2) If FLDFORM=VE, then the maxinum number
of elepents is thke field length divided
hv two.

ODRIQUE
indicates whether or mnot all element values
within a multi-element field are to be
unique,

Specified as: a boolean value.
Default: N

CONV {(CCHNVERSION ROUTINFE NAME)
identifies the name cf the routine used to
convert the input data as it is placed 1into
the data base.
Specified as: a routine nane,

FORMAT (FORMATTING FCUTINE NAME)

jdentifies the routine used to format the
data for output fropm the data tase,

Specified as: a routine nanme,
VALID {VALIDATION RCUIINE NKANE)
identifies +the name of the routine used to
validate the input data.
specified as: a routine name,
VALIDARG (VALICATICHN ROUTINE ARGUMENT)

indicates the argument reagquired by the
validation routine tc¢ validate the input

PAGE 97

values,

Specified asy a hexadecimal character string
gf 1-100 characters.

INDEX
indicates whether the field is to he

indexed,
Specified as: a boolean value,
Befault: N

IFLDEAME
identifies ancther field previously defined
with which this field is to ke indexed,

Specified as: a valid fieldnanme of a
previously entered indexed field.

Default: the EFditor assumes that this field
is the first entered field of a new index
file;

EXTINT
indicates whether the %¥ev of the index file
is to be in interral or external form. If
the key values are t¢ be in external form,
then the field wvalues must be formatted
before being placed on the index file,

sSpecified as: INTERNAL or I for internal
form or EXTERNAL or E for external fornm.

Default: intermal form, i.e., the valve used
on the index file is the same as that stored
in the anchor file,

EXTLEN (EXTEENAL LERGTH)
indicates the maxipum length possihle for an
fermatted value of the external field,

Specified as: a positive numeric value in
the range 1-25€,

NOTE: if the EXTINT entered value is
external, then EXTLEN must be specified.

SPANKED
indicates that this index is to consist of
spanned records,

Specified as: a becolean value,

Q

PAGE 98

Default: ¥

NOTE: this implies that the maximums length
for index keys can be no larger than 255 to
allowv for a one byte sganned counter,

ASS0OC (RSSOCIATED)
indicates whether the field is to be
associated,

Specified as: a boolean valwne,
Default: B

AFLDEAME
identifies ancther field previously defined
with which this field is to te associated,

Specified as: a valid previously entered
field narme,

Defaunlt: the Editor assumes that this field
is the first entered field of a new
associated file.

SUBFILE
indicates whether the field is tc appear on a
sutfile,

Specified as: a boolean value,
Default: N

SYLDEAME
identifies ancther field previously defined
which identifies +the sutfile on which the
field is to be placed. The field named may
be the subfile control field,

Specified as: a valid previouslv defined
fieldnare,

SUBFLID
Indicates uwhether this field is to ke defined
on either a rart or the whole of another
field,

BASEFLD
identifies the field cn which this new field
iz to be defined,

Specified as: a valid previously defined
fieldnane,

PAGE 9%

OFFSET

indicates the it or character vposition of
the defined field c¢n which this subfield is
to start,

Specified as: a prositive oumeric value
tetveen zero and the lenght of +the defined
field minus one.

NOTE: the c¢ffset value must be specified if
the subfield is specified,

FILE

identifies the descrirptor trtegion on which

resides the field that is the defining bhase

for this subfield.

specified as:

(1) The <character *#*' concatenated to the
descriptor file reqion nanme,

(2) The anchor file which may te entered as
@ither of the follcwing: ANCHOR or
AN,

(3) An associated file which may te entered
as either of the following: ASSOCIATED
or AS.

{4) A subfile which may te entered as either
of the followinag: SUBFILE or 5.

pefault: will be assumed to be the anchor

file,

NOTE: this paraneter only needs to be

entered if the defined fieldname is not

unique ¥ithin the data hase, suck as

RECLEN,

FLDBRMEZ

identifies a field which is used to determine
which associated file or vhich subkfile is
being referenced,

Specified as: a valid fieldname,

NOTE: Any rarameter to the CHANGE function
which is defaulted, will dimply that the
existing value for that descriptor field will
be left unaltered.

PAGE 100

NOTE; There 1is a vuser default variable
“EDPROMPT" which when set equal to "Y" will
cause the user to te prompted for every
possible applicable parameter while the user
is either ADIDing a nev field or <CHANGing an
existing field, Imn the ncrmal node there are
parameters such as field alignment ("ALIGKN™)
which are not rprompted for if the auser does
not enter ther in the cormand streanm.

EXAMPLES:

1.

When first creating a new set of descriptors,
the user is first crompted f£fcr the anchor
tile key field,

SYSTEM: ENTER KEY:

USEER: ALL ACCESSHNO

SYSTEM: ENTER FIELDTYFE:

USER: A

SYSTEM: ENTER FIEID FCEMAT:

USER: ¥

SYSTEM: ENTER FIELD LEXNGTH:

OSER: 8

SYSTEM: ENTER BCUTINES:

USER=: {return - wants standard defaults)

SYSTEM: ENTER: {rrcept for next editing
request)

NOTE: If the user declines to enter the key
field information, the Editor is terminated
and control is returned to the Maintenance
director.

The user wishes to add the field USERNAME
which is t¢ te a varyinag element field, each
element is t¢ te 12 characters long and allow
for 50 elements per record, USERNAME is to
be placed cn the asscciated file along with
USERTYPE, It is also to be inverted.

SYSTEM: ENTER:

USER: ADD

SYSTEM: ENTER FYELL NAME:
USER: USERRANE

SYSTEM: ENTER FIFLT TYPE:
USER: A '

SYSTEM: ENTER FIELT FCRMAT:
DSER: VE

SYSTEM: ENTEE FYELT LENGTH:
USER: 500

SYSTEN: ENTER FLEMENT LENGTH:
USER: 12

PAGE 101

SYSTEM: ENTER NUMBER CF FLEMENTS:

USER: 50
SYSTEM: ENTER ROUTINES:
USER: {CORV=UNCUT, FORNAT=UNFNT,

VALIL=UNVAL,}
SYSTEM: IS FIFLC TC EF INDEXED?

OGSER: YES

SYSTFM: CN WHICH INTLEX FILE IS FIELD TO BE
PLACEL?

USER: {return)

SYSTEM: IS FIFID TC BE ON AN ASSOCIATED

' FILE?

USER: Y

SYSTE#: ON WHICH ASSCCIATED FI1IE IS FIFLD TO
EE PLRCED?

USFR: USERTYPE

SYSTEM: 1S FI¥LL TO BEE PLACED ON A SUBFILE?

USER: NQ

SYSTEM: ENTER CEFINING EASE FIELD NAME:

USER: {return)

SYSTEM: ENTER:

3. The user wishes to change the field length on
field SOCSECNC from B8 to § and wishes to
make the index on which it aprpears a spanned
index.

SYSTEM: ENTER:
USEF: CHANGE SOCSECNC" (’9) "(""Y)""

The ADTIIKE Descriptor Function
This fonction allows the wuser to create a
descriptor with all the same specifications as a

previously defined field.

ADLCIIKE FLLNAMF1i=new-fieldnanme,
FLLNAME2=other-fieldnane

Where:

PLDNAME1
identifies the new descriptor to ke added,

Specified as: a valid fieldname.

FIDNAME2
jdentifies a previocusly defined field of
which the new field is ¢to be an exact
doplicate excert for the field name.

Specified as: a valid field nane.

C.

D,

PAGE 102

EXAMPLE:

1. The user wishes to add field MIBKEYWD to have
exactly the sare specifications as the field
MAJKEYWD,

SYSTEM: ENTER=
USER: ADDLIKE MINFKEYWD,NAJKEYWD

The CHECKFPCIRT Command

Checkpcint allows the user to save the descriptors
currently defined in a separate TSS VAM file,

CHEKROINT (none)

CHEPOINT should bhe wused when it is deened
necessary to save the descriptors as rapidly

as possible. The uyser wmpay continue to
process at a future time VIA the Restore
Cormand,

The CREATESUR Command
The command allows the user to create a subfile,

CREATSUR FLDNAME=contricl-field-name,
MAYRECS=#=-1ecords,
ASSOC=<Y K>,
AFPIDNAME=field-name

#here:

FLDNAME
jdentifies the field to te known as the

sukfile ccntrol field,
Specified as: a valid field nawme,

MAXRECS
indicates the raximum number of subfile
records that can occur fper anchor file
reccrd,

Specified as: a tinary number in the range
of 131325,

ASS0C
indicates whether the field is=s to be
asscciated.

Specified as: a toolean value,

E.

Fo

G.

PAGF 103

Defaunlt: W

AFLLCNAME
identifies another field, previously defined,
with which this field is to be associated.

Specified as: a valid previocusly entered
fieldname,

EXAMPLE:

The user wants to create a sutfile for "PETS®
which is tc be associated with CEILD.

SYSTEM: ENTER:
USER: CREATSUE PETS,20,Y,CHILD

The DELETE Ccmmand
This comnmand allows the user to delete a
previously created field descriptor other than
the key field.

DELETE FLDNAME=fieldname

Where:

FLDNAME
identifies the field tc be deleted,

specified as: previocusly described field
name,

THE DISPLAY COMMAND
This command allows the user to display the
specificaticns entered for a previounsly created
descriptor.
DISPLAY PLDRARE=fiecldname
Where:
FLONAME
identifies the field descriptor to be
displaved.
Specified as: a valid fieldname.

The END command

This command terrinates a descriptor editor
session.

.

1,

Ja

PAGE 104

ENE {none)

After the END command has finished, control will
be returned to the Maintenance director, If the
user has not FILE'd since making additions,
deletions, or modifications, he will be gueried as
to whether he wishes to FILE the descrirptors, If
the user wishes to terminate, then the descriptor
editor will indeed terminate the current sessiong
otherwise, the wuser will be prompted for his next
descriptor editor ccmmand,

The FIEIDS Ccmpand

This cormand allows the user to display the names
of all the field descriptors thus far defined,

FIELDS {none)
The FILE Command

This function allows the user to indicate that he
wants the descrigptors to te written from virtual
memory to disk sterage,

PILF DESCOER=<YIN>
Rhere:

DESCOK
indicates whether or ngt the descriptors are
complete, If a NO value is indicated no data
can be loaded into this file.

Specified as: a toolean value,
Default: N
The FLDSEC (Field Security) Command

This command rpermits the data base owner to
restrict access to a field or a group of fields,

FLDSEC FLDEAME=(field-nanme),
SECURTTY={<<ADD{DELETE>.>
security=coded,..s>)

¥here:

FLDNAME
is a list of one or nore existing fieldnames
to vwhich the data tase owner wishes to
restrict access.,

K.

PAGF 105

Specified as: a list of valid fieldnanes,

SECORPITY

iz a list of security codes appended by an
add-delete code separated from the security
code by a period, The add-delete code is
specified as A or ADL for adding a security
code and D or DELETE for deleting a security
code, 1If no add-delete code is entered, it
is assumed the user 1is adding the security
code, The security code 1is specified as an
alrhanureric character string of 1 +o 8
characters, A maximum of 18 security codes
may be specified for any field.

EXAMPLE:

The data btase owner wishes to restrict the
fields ACCOUNT and VAIUE +to the persons with
the security codes BOB, HARRY, and JOHN and
to delete T0M from the security list.

SYSTEM: ERNTER:
USER: FLLSEC (ACCCUNT,VALDE), (ADD.BOSB,
A.HARRY,A.JCH¥N,D.TCH)

The MOVE Command

This command allows the user to reposition fields
within the defined data laycut,

MOVF FLDEAMEl=new=-locaticon-fieldname,
FLDNAME2=fieldnare

Where:

FLDNAME
jdentifies which field or the new location
after which the field specified by FLDNAME2
is to be positioned.

Specified as: a valid fieldnane.

FLDNAME2
identifies the field tc be moved.

Specified as: a valid fieldnanme.

NOTE: A rTedefined field, i,e., subfield,
cannot he moved as its positicn is determined
by the positicn of the base field. If a
subfield is specified as the newv position
fieldname, the MOVE compand will locate and

L.

e

PAGE 106

use the base field name as the new position
field name,

NOTE: A superfield cannot be used as a new
position fieldname, nor can it he moved, as
a superfield consisting only of other fields
has no field pcsiticn,

EXAMPLE:
The nser has entered the three fixed fields
in the followings: AREACOLE, LOCALNOUN,
EXCHNG The user wishes to change the order to
ARFACODE, EBXCHNG, LCCALNUM.

SYSTENM: ENTER:
USER: MOVE AREACCDE,FYXCHNG

Notice this could also be accomplished by the
fellowing:

SYSTEM: ENTER:
USER: MOVE EXCHNG,IOCALNUHN

The PRINT Copmand

This command ogenerates a grinter listing of all

the field descriptors and file descriptors as they

exist in core at the time the PRINT was issued,
PRINT {none)

The RENAME Command

This ccrmand permits the user to change the name

of a field without altering any of 1its other

specifications or its lccation in the data

record,

RENAME FLDNAMEl=new~-fieldnanme,
FLDNAMEZ=0ld~fieldnane

Where:z

FLDNZME
identifies the new field nanme,

Specified as: a valid fieldname.

FLDNRMEZ
identifies the existing field name

Specified as: a valid fieldnane.

N.

o.

PAGE 107

EXAMPLE: The user wishes to change the name of the
field OLDNANE to the pame NEWNAME.

SYSTEH: ENTER:
USER: RENAME NEWNAME ,OLDNANE

The RECSEC {(Record Security} Command

This command permits the user to control access to
a gqrour or grours ¢f records within the data
base,

RECSEC DFLDNAMY¥=field=-nane,
SECURITY=(<<ADD|DEIETED,>
security-code:mask<,.,..>)

¥here:

DFLLNARE
is the existing fieldname to which the file
reccrd security is to apely.

Sprecified as: a valid fieldnanme.

SECURITY

is a list of 9vpr to 18 security codes and
security masks deterzining who 1is to be
permitted access to the secured records on
the file, It is specified as an add-delete
code followed by a period, followed by the
security code, followed by a coclon, followed
by the security mask. The add-delete code is
specified as ADD or A for adding a security
code, or DELETE or D for deleting a security
code. The security code 1is an alpbanumeric
character strirg of 1-8 characters. The mask
is two digit hexadecimal code,

The security ccde is used to compare against
the value in the record security field of a
record to determine whether cr not a user has
access to that record,
The RESTORE Command
This command permits the user to restore tc core
memory the descriptors which had been previously
saved by the use of the CHKECINT command.
RESTORE {ncne)

The SAVSIRT {Save Strategvl Cocmmand

PAGE 108

This ccmmand allows saving of descriptor editor
compands in the strategy data set for future
recreation o¢f descriptors as they existed in
virtwval memory when the SAVSTRAT command was
issued.

SAVSTRT STRTNA¥E=strategy-nanme
Vhere:

STRTRANE
is the strategy name in the strategy data set
in which the descriptor editor covmmands are
to ke saved,

Specified as: a 1-16 character long
alrhanumeric character string.

The Superfld (Define Superfield) Conmand

This comrmand allows the user to create a new field
descriptor which 1is defined as consisting of Data
from several fields.

SUPERFLL FLCNAME=fieldnanme,
ROUTINES=FCRMAT=formatting-routine,
FLDLIST={<<INTERNAI|JEXTEERNALD,>

ficld-name<, .+ .+>)

Where:

FLOHAME
identifies the name of the nev superfield,

Specified as: a valid field nanre,

FORMAT
identifies the routine used to format the
data for output from the data base.

Specified as: a routine name,

FLDLIST

is a list c¢f the previously defined
fieldnames from which +this superfield is to
be composed. The orxrder of the fieldnames
used to define the superfield is the order in
which they were entered, The user nay
specify whether the internal or external form
of the ¢£ield is tc ke passed to the
superfield forrmatting routine.

Specified as: a list of up to 16 character

Iv.

PAGE 109

strings of the forme The output format
concatenated tc a pericd concatenated to the
fieldname to be included in +the superfield.
The format +type internal may be specifiied

as:

INTERNAL or I

The format type external may be specified

ass

EXTERNAL or E

Default: If the output €format dis omitted,
then it will %e assumed to he the external

format type.

NOTE: The superfield compcnents must stay within

the following restrictions:

Te It may contain at wmost one multi-element

field,

2. It mwav contain conmrcnents from one but not

more than one subfile,

THE OPDATE MCDE COMMANDS

A.

The CHANGE CCMMAND

This command allows the user to nodify
previoupsly defined field,

CHANGE FLDNAME=fieldname,

TYPE=(FLDTYPF=field~-type
CLALIGN=<RIGHT{LEFT>>),

FORMN= (FLDF¥ORM=field-format,
PLOLEN=field-length,
ELENIEN=element-length,
ELEMLIM=element-nunber
<, UNIOUE=<YINDD),

RCUTINE= {CONV=conversion-routine,
FORFAT=formatting-routine,
VALID=validaticn-routine,
VALIDARG=validation-argurent)

fhere:

PLDNAME
identifies the field tc be modified.

Specified as: a valid fieldnane,

a

FLDTYPE

PAGE 110

identifies the physical format of the
field,

Specified as:

A

BN

BE

BX

LN

SD

SN

BALIGYN

for an alrhanumeric character string, of
which each character may consist of any
valid EBCILIC character.

for a bit string,

for an 8 bit unsigned binary number
which has a value in the range 0-255,

for a packed bit string the same as B,
except that these <fields will be placed
inmediately after the key field as one
continunous hit strinag,

for a string of hexadecimal numbhers,

for numeric or a 32 kit signed binary
nunber,

for scientific c¢r 14 digit decimal
purber within the range of 10¥*~-75 2
10%%+75,

for scaled deciwmal nine digit number
within the range of 10%2-9 1 10%%+9,

for numeric or 16 bit signed binary
nunher,

for short scientific or a six digit
decimal numrber within the range of
10%%=75 1 10%*%475,

jdentifies either right or left alignment of

Specified as: RIGHT or R for right aligunment
and LEFT or 1 for left alignment,

FLDFORN

identifies the logical format of the field.

Specified as: F for FIXED,V for VARIABLE,FE,
for FIYED ELEMERT,VE, for VARIAELE ELEMERT.

FLDLEN

PAGE 111

indicates the lenqth cf fixed fields or the
maximum length for cther tvpes of fields.

Specified as: a positive integer.

{1y For the anchor file kev field, the
maximun field length is 256.

(2) For all other fields:

{ay 1If FLLFCRA=F, then the nmaximum
field length 1is 3996 minus the key
field lergth; otherwvise,

{b) For all other wvalues of FLDFORH,
the paxieur length is 3994 minus
the key field 1length, This allows
for a two tvte field length
indicator.

ELEH®LEN
indicates the length of fixed elements or the
maximum length for variable elements,

Specified as: a positive numeric value with
the range of 1-256 if FLDFORM is FE, else the
range is 1-255 if FLILFCRM is VE, This allows
one byte for an element length indicator.

ELEMLIM
indicates the maximur number of elements
allowed in the field.

Specified as: a positive integer,

{1) If FLDFCRM=FE, then the paximum number
of elements is equal to the field
length,

{2y If PLDFOR¥=VE, then the maximum number
of elements is the field length divided
by two.

UNIQUE
indicates whether or not all element values
within a malti-element are to be unigue,

Specified as: a boclean value,

CONY
ideptifies the name of the rcutine used to
convert the input data as it is placed into
the data base.

PAGE 112

Specified as: a routine name,

FORHMAT
identifies the routine used to format the
data for cutput from the data base.

Specified as: a routine name,

VALID
identifies the name c¢f the routine used to
validate the input data.

Specified as: a routine nane.

VRALIDARG
indicates the arqument required bty the
validation routine tc validate the input
values,

Specified as: a hexadecimal character string
of 1-130 characters.

NOTE: In the UPLCATE mode, values to the CHANGE
function will nct te accepted which cause changes
to be made to other field descriptor records, such
as changing the f£ield length if the field format
is fixed as this changes the base length of the
data records.

NOTE: Any parameter to the CHANGE function which
is defaulted, will implv that the existing value
for that descrirctor field will be left
unaltered.

Bote: There is a user dafault veriable "EDPROMPTY
which when set eagual to "Y" will cause the user to
be prcempted for every possible applicable
parameter while the user is CHANGE'ing an existing
£ielad, In +the neormal mcde there are paranmeters
such as field alignment (WALIGN"™} which are not
prompted for if the user dces not enter them in
the command stream.

EXAMPLE:

The pser wishes to change the specifications
for the field PEOPLE to RIGHT alignment,
change the elerent 1length from 20 to 30 and
the element limit from 5 to 10.

SYSTEM: ENTER:
USER: CHANGE PECELE, {,BIGHT), (,,30,10),,

B.

C.

D.

E,

PAGE 113

The DISPLAY COMMAND

This copmand allows the user to display the
specifications entered fer a previously created
descriotor,

DISPLAY FLLNAME=fieldnane
Where:

FLDNAME
identifies the field descriptor to be
displayed.

Specified as: a valid fieldname.
The END COMMAND

The END command is terminates a descriptor editor
session

END (none)

After the ENLC command has finished, control will
e returned to the Maintenanmce Lirector,

The FIBLDS Ccmmand: displays all of the descriptor
fieldnames in the descriptor file record, and all
of the descrirtcy fieldnames in a field
descriptor.

FPIELDS (ncne)

FLDSEC (Field Security) Corpand: pernits the file
owner to restrict access to a field,

FLDSEC FLDNAME=field-nanme,
SECURITY={<<ADDIDELETE>.>
security-ccded,...>}

FLDNAME
is an existing field name to which the owner
¥ishes to restrict access.

Specified as: a valid fieldname,

SECURITY
is a 1ist c¢f security codes apnended by an
add-delete code separated from the security
code hy a vperiod, The add-delete code is
specified as A or ALl for adding a security
code and D or DELETE for deleting a security
code. If no add-delete code 1is entered, it

Fa

BAGFE 114

is assumed the user is adding the security
code, The security code is specified as an
alphanumeric character string of 1 to 8
characters. A maximum of 18 security codes
may be specified for any field,

The PATCH Command

This command is used to change the value ¢f almost
any descriptor field on any descripgtor record in
any descriptor reqgion, Tc use the PATCH conmand,
the user must do a REVIEW of the desired
descripter record, This not only displays the
contents of this descriptor but alsoc positions to
the record that is to be patched.

PATCH (keyword=text<,,.,.>)
Rhere:

keyword
identifies the descriptor field that is to be
patched,

text
is the value with which the descriptor field
specified in 'keyword' is to be patched.

The user may specify any number of patches 1in a
parenthesized list,

The following is a 1list of file descriptor or
header descriptor field names that may be patched
and their values,

BEADER FIELDNAME FIELD VALUOES

{1) FILETYPE ANCHOR or 1, ASSOCIATE or 2,
SOBFILE or 3, INDEX or 4,

(2) DESCRCT A positive integer <= 4000,

(3) BSELNGTH A positive integer <= 4000,

{4) DESCOK becolean value,

(5) SPRYWNED boolean value,

A
A
{6y DATA A boovlean value,

{7) MNINABLE 4 boolean wvalue,

{8) MNTHIRG 32 bhoolean value,

(9}Y LOADABLE A boolean value,

{10) RECSECFP B positive integer <= 261.
{11) RSECTYCD The form of the patch text is:

fn} smecurity-code:mask

Fhere:

PAGE 115

is the 4index of the security code to be
patched, The index must be entered or the
patch will be rejected.

specified as: a positive integer <= 18,
NOTE: The next security code value may be
added to the 1list ty specifying the next
larger index value.

Refer to the RECSEC command writeup for a
discussion of the security rparameter.

EXAMPLE:

The

The user wishes to ctatch the anchor header
descriptor sc that BSELNGTH=31, DATA=NO, and
the second value of record security to
BOB: %60,

SYSTEM: ENTER

USER: REVIE% * ', ,*HEADER

SYSTEM: (displavs the anchor header

informaticn.)

SYSTER: ENTER:

USEF: PATCH (BSELNGTH=31,DATA=N,
RSECTYCD= (2YBCE:60)

SYSTEN: ENTER

following is a 1list of field descriptor

fieldnames that may te patched alcng with their
values,

FIELD DESCRIPIOR

m

{2

3)

(#)
5
(6}
n

FIFILCNAMES FYELL VALUES

ASSCCFIL a one character string in the
range '0Q? to '9°,

SUEFILE a one character string in the
range 'Q* to YZ°',

INVFILE a cne character string in the
range *Af' to 'PY,

READONLY a boolean value,
SUPCNTRL a boolean value,
YARFLD VARYING or V,FIXED or F,
BITFLD a bcolean value.

8

9

(10)
(n
(12)
(13)
(1)
(15)
(16)

{17

(18)

(19)

(29)

NOMALIGH
VARELT

UNIQUELT
INDEXEXT
GENERCRT
VALIDRTN
REFCRMAT
FLLFOSIT

FLDLEN

ELTLIM

ELTLEN

VALIDARG

NAMEFLD

PAGE 116

RIGHT or R,IEFT or 1,
VARYING or V,FIXED or ¥.

a hoolean value.

EXTERYNAL or E,INTERNAL or I,
a routine name,

a routine nane.

a routine rnane,

a positive integer <= 4000,

a rositive integer, If the
field 1is indexed then the
paximam value is 256,

Ctherwise the maximum value is
4000.

a rpositive integer. If the
elements are fixed length, the
maximum value is 4000,
Otherwise the maximumr value is
200GC.

a positive integer <= 256,
a hexadecimal character string
of length 1 to 100

characters.

The patch text 1is of the
form:

{n) <<INTERNAL{ EXTERNAL>.>fieldname

Where:

n
is the index of the
surerfield component to
ke patched.,

Specified as: a positive
integer <= 16,

NOTE: The index must he
entered or the patch will
te rejected,

G.

PAGE 117

Refer to the SUPERFLD

command writeuv for the
superfield components
description,
{21) SECURITY The patch is in the form:

{n) security-code

Vhere:

n :
is the index of the
security code to be

patched,

Sprecified as: a positive

integer <= 18,

NCTE: The index

muast be

entered or the patch will

ke redjected,

secarity-code
is an alphanumeric
character string of
lenqth L to 8
characters.

EXAMPLE:

The user wishes to patch the field PHONENUM
on associate file 1 to have a formattina
routine of PHONFMT on the third component of
this superfield to te in external form and

have the field name of ILOCALNUNM,

SYSTEM: ENTER:
USEE: PEVIER 1,PHCNENUM

SYSTEM: (displays the field information,)

SYSTEM: ENTER:

USER: PATCHE (REFCREAT=PHCNFNMT,
NAMEFLL=(3) E.LOCALNUN)

SYSTEM: ENTER:

The RECSEC (RECCRD SECURITY) COMMAND

This cormand perpits the owner to centrol
to a grcup or grcups of records.

RECSEC DFLDNAME=field-nanme,
SECURITY= (<<AILIL|ILELETE>.>
security-coded,...>)

access

PAGE 118

Fhere:

DFLDNAME
is an existing fieldname which is used to
define which file record security 1is to

aprly.

Specified as: a wvalid fieldname.

SECURITY

is a list of up tc 18 security codes and
security masks determining who 1is to be
permitted access to the file, It is
specified as an add-delete code, followed by
a rperiod, followed by the security code,
followed by a colon, followed by the security
mask, The add~-delete code is specified as
ARL or A for adding a security code, or
DELETE or D for deleting a security code,
The security code is an alphanumeric
character string of 1-8 characters, The mask
is a two digqit hexadecimal code,

The security ccde is wused to compare against
the value in the record security field of a
record to determine whether c¢r not a user has
access to that record,

NOTE: 1In the UPDATE mode the record security mast
already exist for the file to Le able to use
RECSEC. In the UPDATE vwode, RECSEC is used to
update the existing list of record securitv codes
and masks.

The BREVIEW COMHMANE

This command is used to review the contents of any
descriptecr record ¢r any descriptor file. This
includes dummy records, file dJdescriptcr records
and those records such as RECLEN which are not
unique to the entire data tase.

REVIEW FILE=file-name,
FIDNAME=<%*HEADER)field-nane>

¥here:

FILE
identifies the descriptor region containing
the fieldname to be reviewved.

Specified as: the full descriptor region
name or the character suoffix of the

PAGE 119

descripter region,

NOTE: A null value is taken tc indicate the
anchor regicn,

FLDNANME
identifies the field which is to te
reviewed,

Specified as: a valid fieldname or either of
the following character strings: *HEADER or
* which will dimply a review of +the file
descriptor for the descriptor region namned
above,

PAGE

APPENTIX A.
A, Descriptor Editor command format.
1. Edit Descriptor,
EDIT MODE = <CREATE{JUPDATE]{RESTORE>
B. Create Mode ccmmand forwmats,

1. ADD FLCLNAME=field-name,

TYFE=(FLDTYPE=field-type

< LALIGN=<RIGHTIIEFT>),
FOEM={FLDFCRMN=field~-format,
FLDLEN=field-length,
ELEMLEN=€lement~lenqgth,
ELENLIM=element-number
<,UNIQUE=<Y |¥>>),

ROUTINES= (CONV=conversion-routine,
FOEFMAT=formatting-routine,
YAlIDl=validation~-routine,
VALICARG=validation-arqument),

INLEXED={INDEX=<LY]I N>,

IFLLYMAME=fiecld-nanme
< EXTINT=<INTERNAL{EXTERNAL>,
EXTIEN=external-length,
SEARNED=XY|N>>»),
ASSOCBD=(ASSOC=<YI N>,
AFLLNAMF=field-nanme),

SUBFILED= (SUBFILE=<Y| K>,
SFIDRAME=field-nanme),
SUBFIELD={SUBFlD=<Y|{N>,BASEFID=FIELLWAKE,

OFFSET=0offset

€, <FIIB=<*filenamel ANCHORD>D>

or <FILE=<ASSOCIATEL{SUBFILE>,
FIDNAME2=field~named>)

2. ADDLIKE FLDEANE=new fieldnanme,
FIDNAME2=other~fieldnanme

3. CHANGE FLDWAME=field-nane,

TYPE={FLDTYPE=field-type
<, ALIGHN=RIGHT{LEFT>»>},

FORM= (FLDFORF=field-format,
FLDLEN=field-length,
ELEMLEF=element-length,
ELEFMLIM=element-number
<,UNIQUE=<Y|N>>)},

RCUTINES= (CONV=conversion-routine,
FOtMAT=formattinag=-routine,
VALIL=validaticn-routine,
VALIDARG=validation-argument),

INDEXED= (INDEX=<Y{N>,

12¢

4.

Se

8.

9.

10.

11.

12,

13,

14,

PAGE

IFLINAME=fiecld-nare
< EXTINT=<IRTEERNAL{EXTERNAL>,
EXTLEN=external-length,
SEANNED=<Y{ N>,
ASSQCED= {ASSCC=<Y N>,
AFLDNAME=ficld-name},
SOBFILEL={SUBFILE=<LY}| N>,
SFLONAM¥=field-name),
SUBFIELD=(BASEFLD=field~napme,
SUBFIELD= (SUBFLD=<710>, EASFFLD=FIELDNAME
CFF3ET=0ffset
<, KFILE=<*filename] ANCHORD>>
or <FILE=<ASSOCTATEL{SUBFILE>,
FLINAME2=ficld-named>>)

CHEBCTNT {none)

CREARTISUF FLDKAME=control-field-nace,
PAYRECS=#~-Tecords,
ASS0C=<Y|N>,
APLVAME=ficeld-name

DELETE FLDNA#E=field-name

DISPLAY FLDNAME=field-nane

END {none)

FIELDS {(none)

FILE DESCOE=<YIn>

FLDSEC FLDNAUME= {field'ﬂame<'0 se2),
SECUORITY=(<<ADD{DELETE>.>
security-coded, ++4>)

MOVE FLINAME1=nevw-lccation-field-name,
FLLNAME2=field-name

PRIRT {none)

RECSEC DFLDNAME=field-nanme,

121

Ce

15.

16,

17.

18.

PAGE 122

SECORITY=(<<ADD}DEIETIE>.>
security-ccde:mask<, . .>)

RENAME FILKAMEl=new~field-name,
FLORAME2=0ld-fieldnare

RESTORE {none)

SAVSIRT STRTNAME=strategy-nane

SUPERPLL FLDNAME=figld-nanme,

ROUTINES= (CONV=conversion~routine,
FCRMAT=fcrmatting-routine,
VAlID=validaticn-routine,
VALIDARG=validation-argument),

FLT1IST= {<<INTERNAL{EXTEENALD,.D>

field-name<,...>)

UPDATE MODE Ccmmand Formats.

1.

2e

3.

4.

5.

CHANGE FLDMNAME=field-nanme,

TYPE= (FLDTYPE=field-type
<,ALIGN=<RIGHT|LE®T>>),

FCR¥= (FLLFORM=field-format,
FLDLEN=field-length,
¥LEMLEN=element-length,
ELEMLIM=element-number,
<,ONIQUE=<Y{n>>),

RCDTINES= (CONV=conversion-routine,
FOPMAT=forpmatting-routine,
VYALIl=validaticon-rcutine,
VAIIDARG=validation-~argunent)

DISPLAY FLDNAME=field-name

END {none)

FIELDS {none)

FLDSEC FLDNAME=field-name,
SFCURITY={<<ATDIDELETE>.>
security~ccde<d,...”?)

6. PATCH {(field-nane=value <,...>)

7. BECSEC EFLO¥AME=field-name,
SECURITY= {<<ADD{DELETE>.>
security-code:mnask<, s>

8. REVIER FILF=file-nanme,
FLDNAME=<*HEADER{FIEID-name>

PAGE 123

PAGE 124

APPERLIX B.
CREATE MOLF
OPERAND REIATICNSHIES

When creating descriptors there are certain implied
relationships between the wvaricus orerand combinations that
ray be specified. In those cases, the Descriptor Editor
assimes the implied value and over-rides any value specified
by the user. ¥hen modifying descriptors the Descriptor
Edit or normally interprets a default response to indicate no
change to a particular operand.

The following tatle indicates the default values and the
maxi mum values for several rarameters of the ADD command,

TABLE 1

CREATE MODE

OPERAND DEFAULT AND MAXIMUM VALUES

DEFAULT MAXTIMUNM MAXTMUIM MAXTMUM
FLDTIYFPE FLDFMT ALTGNMENT FLDLEN ELEMLEN ELEMLIM
A ¥ L .. 3996-Key Length NA NA
A v L © "3994-Key Length NA NA
A © FE L 3994-Key Length 256 (FLDLEN)
A VE L 3994-Key Length 255 (FLDLEN/2)
B F L 1 NA NA
BN F R 1 - NA NA
- BN FE R - 3994~Key Length -~ =< F -2o> o {FLDLEN) -
‘BP _F L 1. [‘NA NA
HX F L 2(3996-Key Length) NA~ NA
HX v . e 2(3994-Key Lehgth) =~ NA . NA
HX FE L 2(3994-Key Length) 256 (FLDLEN)
HX VE L 2(3994~Key Length) 255 -, (FLDLEN/Z)
1IN ¥ R b } NA NA
LM FE R 3994-Key Length & - (FLDLEN/&)
g ¥ - R 8 .. . NA .. NA
s FE R 3994~Key Length 8 ~ (FLDLEN/8)
) F R 5 ... ®A NA
SD FE R 3994-Key Length 5 (FLDLEN/5)
SN F R 2 NA NA
SN FE R ~ 3994-Key Lemgth 2 (FLDLEN/2)
SS F R 4 NA : NA .
SS FE R . . 3994-Key Length 4 . (FLDLEN/4)

"YY"

,_Default conversion. and formattlng routine names are R
_inserted.by the éditor unless specified by the user. .

The routine names havé the format DBXXXYY, Where,

"XXX” is either CVT for canversion routlne or FMT

for a formatting routine, and

1s "SP" for field type' "A" and is the field

type itself for all other field types.

PAGE 126

APPENLIX C,.
PREDEFINEL FIFLES

In most cases +when the user defines or creates a new
fieldname there is canly one field descriptor created. There
are, however, some exceptions to this which are enumerated
beh\i.

When the anchor file key field is ccmpletely defined by the
user, the following fields are autcmatically dJdefined and
added to the list of field des=crigtcrs.

1. The FILEREY field is a field defined over the amnchor
file key field, This field has all of the
characteristics of the anchor file key field except for
the field name and that it is a readenly field, that is
a redefined field.

2. The fields FREFFORM and COMFMENIS are defined for the
retrieval system COMMENTS dis a varving length field
designed to hcld any ccmrent the user may wish to place
there, TFREEFORM will allow the user to specify his own
particular kXeywords for the file he is referencing and
he is able to base strategies on these user entered
keyvords,

The RECLEN is a predefine field which will appear in each
descriptor reqion of the data base, This field defines the
record length field which aypears c¢n each variable length
record in a file.

When the user specifies reccrd security for any file, for
the first time, a field is created describing the record
security code that appears in each data reccrd of that file,
This field 1is placed immediately after the anchor key for
the anchor and associated files, and ipmediately after the
parent key field on subfiles,

The record security fieldname is created in the following
panmrer for the different file types:

1. ANCHOR file - the fieldname is RECSEC.

2. ASSOCIATED file = the fieldname is RECSEC concatenated
to the suffix of the associated file, i.e. 1 to 9,

3, SUBFILE -~ the fieldname is the subkfile control
fieldname concatenated tc RS,

When the user creates a sukfile bty the CREATSUB command the
following fields are defined:

PAGE 127

The subfile control field itself . which resides either
on the anchor file or an associated file,

The subfile key field which is the subfile control
field name concatenated to ID,

The subfile rarent ey field which is a copy of the
parent anchor key field, This fieldname is created by
taking the subfile control fieldname concatenated with

PE.

4,

'Rllowance is made for subfile record security by

creating the fieldname of subfile contrel field name
concatenated to BS,

The field characteristics cf each of the predefined fields
ar€ included ip Tabkle 2,

A1l

of the aforementioned fieldnames are included in a

resarved list, These fields cannot te altered by the user
except in the following manner:

© To modify FILEKEY, the anchor file key field must be
-modified, The predefined fieldnames for record

security capnot be modified in any way and can only be
created through use of the RECSEC ccmmand, The RECLEN
field descrirtor cannot be medified. The subfile

. control field and sutfile key field cannct be medified
‘once created, The subfile rarent key field will only

A

be changed to reflect changes in the anchor file key
field, The fieldname fcr sutfile record security can
only be created through use of the RECSEC command.

Table 3 contains the names of the reserved fieldnames.
As subfiles are created, the sutfile ccntrol fieldname,
the subhfile key fieldname, the subkfile parent key field
name, and the subfile record security fieldname are
placed in the reserved fieldname tatle, which then
become teserved field names subiject to the above listed
restrictions,

/12

TABLE 2
PREDEFINED FIELD CHARACTERISTLCS

: o ' record() -Subfile(l) subfiie(l)‘subfiie(lj
FLDNAME COMMENTS FILEREY FREEFORM RECLEN security control id pareat

ASSOCFIL 1 (none) 1 {none) " (none) (5) - {none). ~ (none) -
SUBFILE . .. (none) .. (ncme) - (aone)- -(none)-. - -(none) -+ (neme) - - (hone)~ - (nome)} "
INVFILE .. (none) .. .({none): .4 - {none) - (none) . -(mome) - - (none) .. - {(nome) .
READONLY™ =~ MO Y NO YES NO - YES NO YES
SUBCKTRL HO N NG ' KO NQ YES NC - N0
VARFLD VARYING F - VARYING FLZED - FIXED VARYTHG .FIXED FIXED
BITFLD NO N NO ¥O NO - -N¥N0 - | NOo.NO
NUMALIGK - LEFT-~ (2) =~ LEFT RIGHT CLEFT RIGAT RIGHT L2 .
 YARELT -~ {mome)}> -fnome) FIXED (mone) =~ (none)” FIXED ~ "(none) "(nbne)
INIQUELT ®O - (none) NO {ncne) {none) YES {none) - {none)
INDEXEXT (none) (none) INTERNAL (none} {none) {nonea) . {(none). - {none)
GENERCRT. DBCVTSB (2) .DRCVTSE - DBCVIRL DBCVTHX -- DBCVTID DBCVTID - {2)
VALIDRTN (none) (2) {none) (none) {none) {none) (none) (2)
REFORMAT DBFMTSE {2) DBFMISE DBFMIRL DRFMTHX DBFMTID DBITMTLID (2
FLDPOSLT 2 & 1 0 (4) (4) 4 7
FLDLEN 3988 . (2) 3988 4 1 ® 3 @
ELTLIM: -~ -- 0 0 : -1Q0. o - 0 (6) 0 ,
ELTLEN (R 0 40 0 0 3 ¢ I 0 .
-VALIDARG '(noﬁe) (2) - (none) (mone) - {none) - (none) (mome) . = (2)

.- NAMEFLD *{none), (none) (nong)},_, (none) {none) {none) (none) {none)
SECURITY (none)() (none)(3) (none)(g) (none)(?')” (none)(B)'_ (none)(B)) (none)() (nong)()

i - JE—— Lo e . m s e F = R R

(1) Refer .to. the text for the dgrlvatlon of the.actual fleldname.,'

............ o T _'-: ';- : _‘ '-.. .
‘%2) “$The- actual‘?alue Ts ‘taken from tHE anchor kef’fleld.Av,__f) T T ,
'-‘(3) ‘There is To field security.om. these fields unless spec1fied by the e e
user through use. of the FLDSEC command.. S

R (4) The. value will be determlned at "FILE" time. - -' ' ' o e
(5) .The value will depend on the "ASSOC" and "AFLDNAME" parameter values . R
‘ . ta the -GREATSUB ecommand. ' :
(6) The actual value will depend on the input value to "MAYRECS" parameter
to the CREATSUB command.

. PAGE 129

APPENDIX D.
DESCRIPTOR FILE OVERVIEW

Each descriptor file is an indexed segquential (ISAM} reqion
Data Set vwhere the key is developed by concatenating an
eicht character field name to a seven character file name.
The name of the descriptor file is ccnstructed by apperding
a "#" to the six-character data ltase name {padded with "3"
if necassary).

The first record of each set of descriptors is called a
healer record and has a field name of tlanks. This record
is used by the system tc reflect the current statas and
lewl of activity of that file, as well as contrelling
access to it, and is composed of fields described in Table
4, The remaining records are thke field descriptors,
thenselves, and are composed of the fields described in
Table 5,

/30

TABLE 3

PREDEFINED RESERVED FIELDNAMES

1. COMMENTS
2. FILEKEY
3. FREEWORD
"4, RECLEN
" 5. REGCSEC
6. RECSECL
7. RECSEC2
8. RECSEC3
9. RECSEC4
10. RECSEC5
- 11. RECSEC6
12. RECSEC7
13. RECSECS
14. RECSECY

FILE DESCRIPTOR FIELD SPECIFICATION

TABLE 4

/31

(2}

the bit location within the byte. -

For variable length fields the location field is used
. .as8 a variable field index.. , o

FIELD FIELD FIELD FIELD ELENMENT ELEMENT
FIELD NAME TYPE- _ FORMAT LOCATTON LENGTH LENGTH COUNT
RECLEN N F 0 4 o 0
KEY \ A - - F SRR 15 0 0
- FLENAME A F 4 7 0 o-
DATAPLEX A F 4 6 0 0
SUFFIX A F 10 1 0 o
FLDNAME A F 11 8 0 0
 FILETYPE A F 19 1 0 0
DESCRCT SN . F 20 2 o 0
BSELNGTH SN F 22 2 0 0
DESCOK B ¥ 24 0(1) 0 i
SPANNED B F 24 2(1) 0 0
DATA B F 24 A 0 0
MNTNABLE B F 24 6Q1) 0 0
NG B T 25 (L) 0 0
LOADABLE B F 25 4(1) 0 0
REMATNS HX F' 26 4 0 0
RECSECFP SN F . 30 2 0 0
RSECTYCD A FE 1(2) 164 g 18
(1) For bit switches the length fieid is used to indicate

FIELD DESCRTPTOR FIELD SPECIFICATION

FIELD

TABLE 5

ELEMENT

/ 3__/_4,-

ELEMENT

the bit locaticn withip

(2)

For variable length fields the locati

as a variable field index.

the byte.

on field is used

: ~ FIELD - FIELD FIELD
FIELD NAME TYPE FORMAT LOCATION LENGTH LENGTH COUNT
RECLEN LN F 0 & 0 - o
. - KEY A F 4 15 0 "0
-~ FLENAME -~ A Fo 4 7 0 0
DATAPLEX A F 4 6 0 o
SUFFIX A F 10 1 0 0
FLDNAME A F 11 8 0 0
ASSOCFIL A F 19 1 0 .0
SUBFILE A F 20 1 0 0
INVFILE A F 21 1 0 . 0
. READONLY 8 F 22 0(1) 0 0
SUBCNTRL B F 22 2(L) 0 o
VARFLD B F 22 4(1) 0 0
BITFLD B - F 22 6(1) 0 0
NUMALIGN B F 23 a(1) 0 0
VARELT B F . 23 2(L) 0 0
UNIQUELT B F 23 4{1) 0 . 0
INDEXEXT B F 23 6(1) 0]
GENERCRT A F 24 8 0 0
VALIDRTN A F 32 8 0 0
REFORMAT A F 40 8 0 0
SPARE HX F 48 -8 0 0
NAMECNT sy F . 56 2 o . 0 -
FLDPOSIT SN F 58 2 0 G
. FLDLEN SN F - 60 2 0 0
DFLDLEN SN " F . 62 2 0 0
ELTLIM . SN . F .64 2 LA 0o
DELTLIM ~ ~ &8N F- 66 2 0 o -
ELTLEN - SW F 68 2 0 0
DELTLEN SN F 70 2 0 0
VALIDARG A v 1(2) . 52 0 0
' NAMEFLD A FE 2(2) 146 8 18
SECURITY A FE 3(2) 146 9 16 .
(1) For bit switches the length field is used to indicate

Fiel ds
which

they are created as

e)

~ | A?Pfﬁﬂ?ﬁ Eow Losoron iUeiT TE

THE POSITION OF FIELIDS WITHIN R RECCRD

are positioned in the data record in the
tc the fcllowing algorithim, On

the anchkor and associated files the order is:

1.

2.

3.

4 '."
5

6.

RECLEN,

anchor file key field,
record security field,
all packed bhit fields,
all fived length fields,

all varving length and elemental fields,

On subfiles the order by position is:

"1’
-3,
23,
L,
-1 S,
FRA 8

25 Ts

The Descriptor Fditor maintains three
each descriptor region,

RECLEWN

sukfile key field,
subfile parent key field,
record security field,
all packed bit fields,
all fixed lenath fields,

all varying length and elemental fields,

figld groups:

MV B

-~

L

3.

packed tit fields,

lists of fields
cne list for each of the folloiwing

PAGE 132

order in

for

fixed length fields including ordinary or unpacked

bit fields,

varying length and elemental fields,

The order within each field group is determined by the order

in which the user creates fields withir each grour.

This

ordering may ke changed thrcuagh use cf the MOVE command.

PAGE

TCHC D.3 - DBIOAL USER's GUITE

I.

IT.

ITL.

INTRCDUCTION

The DBLOAD prcgram is a generalized routine

t0 be used for either initially loading data
onto a newly defined file, or fcr updating

an existing file, 1In either case, the
descriptors for the file must have heen
completely specified by using the Descriptor
Editor before any loading of data i=s attempted,
The program is made general by the fact that
€each input record read is passed to a
specifically written sult-routine which
identifies each of the fields that comprise
the record, and passes thkis informaticn kack to
PBLOAD for prccessing.

This manual describes the mode of operation
for DBIOAE, LINKEDIT for IBLOAL, and the
praraneters necessary tc inveke it. The
procedures to follow for writing a DBLOAD
exit routine are also in this user's guide,

LINKEDIT

Since every load will have its own user-written
€xit routine, it is necessarv tc linkedit the
new exit routine with other needed DBLOAD
modules to prcduce the final executable DELOAD
module., A standard LINKELIT deck could

be made-up where all the user has to do is
insert the INCLUDE card for his exit routirne
and then execute the LINFEDIT step.

As a separate step after the LIKREDIT, the
DBTABLE procedure must he executed, This
puts the new external entry pcint name of
the DBLOAL Exit routine into a dicticnary
file that is used by NASIS.

Currently, the DBLOAD exit routine must be
compiled with the PL/1 version ¥ compiler to
he compatible with DBLOAEL.

Appendix B gives an example of a LINKEDIT
for DBIOAL, with the LETAELE step.

INPOTS AND OUDTRUTS

DBLOAD Tatle 1 lists the major imputs and

133

PAGE

gntputs from the DBLCAD yrogran,
and produced {output) by the DELCAD
program,

INFUT

INPUT DATA SET: This data set contains the
data that is to bhe loaded to the catrut
datakases., The input most be an indexed
seguencial data set.

DATABASE DESCRIPTQORS: This data set is the
previously defined file descriptors for

the databtase to be loaded.

ogtPUT

PARAMETER CONTROL CARDS: This data set
contains the prograr raramets for
different program functions.

DATABASE: This is the actual files making
up the database, Database can include an
anchor file, associated files, sutfiles,
and indexed files.

ERROR DATA SET: This data set is a copy of
the input records that cannct te lcaded to
the datalbase.

MESSAGE LATA SET: fThis data set ccontains
error messages and cther informaticnal
messages {such as record ccunts).

134

PAGE 135

Iv. CCNTROL

The DBLCAD Prograr is cchntrolled hy job control
statements, The jol contrcl statements are
required to execute or invcke the LELOAD program
and to define the data sets that are used and
produced by the program. The parameter
statements are used to control the functionms

of the lcad.,

JOB CONTROL STATEMENWIS

DRLOAD Table 2 shows the 4ot control statepments
necessary for executing or working the DBLOAD
program,

DBLOAD Table 2., Jor Contrcl Statenments for
the DBLOAD program

STAT EMENT USAGE
JOE This statement initiates the job,
STA? EMENT

EXEC This statement specifies tle prograr name

STAT EMENT {(PGM = DBLOAL) or, if the jcb centrol
statements reside in a procedure likrary, the
procedure nane.

SYSPRINT This statement defines a sequencial message

DD data set,

STAT EMENT The data set can te written onto a systen
output device, a magnetic tape volume or a
direct access volume, (This DD statement nmust
be present)

PRTOUT - This statement defines the informaticnal data

DD set written by the program, DCB = (RECFN=FA,

STAT EMENT LRBECL=133, BLKSIZE=133), DCNRANE fixed.

CAEDIN This statement defines the parameter card

DD data set that contains the program parameters,

STAr EMENT Data set resides in the input stream, DILNAME
fixed,

EREOR This statement defines the error data set that

DD will contain reccords that cannot be loaded to

STAT FMENT The database, DDNAFE is not fixed.

IATABASE These statements define all files that are

DD

PAGE

in the database (descriptors, anchor,

STATEMENTS associated, subfiles, indeyes).

INFOT
oD
STAT EMENT

STIPLIB
DD
STAT EMENT

STRrIC

oD

STAT EMENT
ESITAB

DD

STAT EMENT

This statement defines the input data set
that contains data to be lcaded to database,
Must be an indexed seguencial data set.
DDHRAME not fixed,

This statement defines the litrary where the
production or latest versicn of the TEBLOAL
module resides,

This statement defines the STATIC (statistics)
file,

This statement defines the external static
dictionary entry pcints file.

136

PAGE 137

PARAMETER STATEMENTE

The DBLOAD program is contrclled ty

paranmeter staterents. The parameter

statements are enterd in the input

stream (CARDIN DD Statement) as required.
Following is a list of DBLCAD proqram parameters
with their fanctions:

sfilenanme!
jdentifies the databkase to be loaded,

Specified as: a 1-6 character name of
the datahase,

‘mode?
identifies the mode of operaticn for the
prcgranm

Specified as: a one character code,
'1.* for lcocad mcde, '0¢ for update mode,
and '*R? fcr restart mcde.

Tefault: 1load mode is assuned.

texit?
identifies the name of the user exit
routine which is to te called to
describe the ccmposition cf each input
record,

Specified as: a 1-7 character name of
the user exit routine entry point,

Default: the exit name is constructed by
prefixing the file name with an *'X°,

tformat!*
identifies the name of the key field
reformatting routine,

Specified as: a 1-8 character name whose

first character must be alphabetic and

whose remaining character must be
alrhanumeric.

pefault: no ¥ev formatting routine is
assumed,

tanchor!?
indicates whether the anchor file is
to te lcaded

specified as: a one character code,

1Yt for ves, and *'N' for no,

Default: the anchor file will not be
lcaded.

tassociate?
identifies the associate files to be
loaded.

Specified as: a meltiple element
parenthesized list of associated file
suffices (1' 2' s 9)

Default: no associated files will be
loaded,

tsybfile?
identifies the suhfiles to be loaded.

Specified as: a multicle element

parenthesized list cf subfile suffixe

{B,S,000)

Default: no sukfiles will te loaded,
findex?

indentifies the fields to be inverted

with this lcad.

Specified as: a multiprle element

parenthesized list of 1-8 character

field names {FIELD1,FIFLDZ,...}

Defaultr no index files will dbe load

tinput?

PAGE

S

ed.

identifies the fully qualified name of
the input data set frcm which DBLOAD is

to obtain its data,

Specified as: a 1-3% character fully
qualified dataset name,
Default: no index files will be load

finput!*
identifies the fully qualified name o

ed,

£

the input data sa2t frem which DBIOAD is

to obtain its data.

Specified as: a 1-3%5 character fully
qualified dataset nane.

Default: ¢the input dataset name is

138

V.

PAGE 139

constructed by avpending the gqualifier
t INPUT® to the file name,

*generate!

indicates whether cr not large numeric
keys are to be generated for the output
data base,

Specified as: a one character code, 'Y!
to indicate that large numeric keys

are to be generated, and *'R' to indicate
not to generate keys.

Default: FKeys will nct be generated,

terrort

identifies the fully qualified name of
the error dataset to which invalid input
records are to be dumyred,

specified as: a 1-3E character fully
qualified dataset nane,

Default: the error dataset nawre is
constructed by appendirg the qualifier
t* EEROR' to the file name.

‘*errors?

identifies the number of non-critical
data errors that are allowed before
terminating the program

Specified as:y a 1-4 digit nunmber.

pefault:; a limit of 1C0 errors is
establisgshed,

Examples:

1.

The user wants to load a f£ile with the
anchor, associated file 1, subfiles

¥ and Z., The key has a formatting
routine entry point name of DEFMTLN.
No fields are to be inverted. User
exit routine is XFXIT and input file
DSHNAME is filerame.inrput. Appendix A
illustrates a run deck for ahove load.

OPERATIKG MOLDE

).

Load Mode

In the load mode, CFLICAD simrly opens the
input dataset for input and the file for

PAGE 140

cutput and beqins processing,
B, Opdate MNode

In the update mode, DBICAD opens the
input file for inout and the outpat file
for direct outrut and begins processing.

C. Restart #Hode

In restart mode, DBIOAL opens the file for
update. It uses the restart key to position
itself in the input dataset, It then

reads the next sequential record., It is
now ready to hegin processina,

vI. DBILOAD EXIT FOUTINES
. Introduction

As mentioned earlier, DBICAD passes each
inrut data reccrd to a user written exit
routine for analysis before actually
writing any data to ttke file. This
routine has the function of identifying
each data field in the input record with

a field name, indicating its starting
location in the input record, and
specifying the lencoth of the data, If

the data field is on a sutkfile, the exit
rootine has to identify the subfile control
field name before any subfile fields can
be put. :

Further, the rcntine can specify that

the field should have leading and/or
trailing blanks stripped cf€ by DBLOAD,
that the field be skipped, that the record
be skipped, that the lcad te terminated,
or that subseaquent calls tc the exit
routine must indicate when a new key is

to te located to the ountput file, This is
used in the case of multiple input records
for an cutput file key.

When the update mode is used, the exit
rouotine must indicate if this is a record
to Le delsted, a reccrd to be added, or

a record to te replaced,

B. Exit Routine Parameters

The calling sequence used by DELCRAD to
transfer contrcl to tte exit rontine is:

<)

C.

PAGE 141

CALL exitname {input-data, user-ptr,
byprass~-switches)

Where:

texitname®
is the entrv pcint name of the routine
to be called.

input-data
is a varying length character string
(raximum size - 4000 bytes) that
contains the entire input data record,
including the fcur-bvte record length,

*user ptrct
is an external rcinter that points
to the user allocated structure,
This structure ccntains the field
names, the field lengths, the field
offsets, and the subfile suffixes.

*bypass=-switches®
is a string of sizteen bit switches
to be posted by the exit routine to
further define the status of the record
for DBLOAL., The order and meanings of
the various bits are:
Bypass Call - tyrass subsequent calls
Bypass Reccrd - bypass this record
Forward-Scan - delete leading blanks
on fields
Backvard-Scan - delete trailing
blanks cn fields
Terminate Egm - terminpate the program
Delete-Reccrd -~ delete this record
Replace~Record - replace this record
Update~Record - update this record
(fields)
New-Key - locate this new key
Bits 10=-1€ - unused by DBLOAD

Exit Rcutine User Structure
The following sample exit routine (appendix

illustrates how to declare and use the

user based structure. TFirst, set the

refer dimensicn equal to the maximunm

number of fields and €lements (one field
and a pulti-element field with 10 elements
would te 11V plus number of subfile control

Vil

b.

PAGE 142

fields that may Yte assigned,

Next allocate the based user structure, Next
assign the key-name, the key-ptr to the
location of the key within the input record,
and assign the kev field length. Each

entry into the exit routine will then

require the field names to be assigned,

the record, the field sizes assigned,

and the subfile suffixes assigned if

field is a sutfile control field.,

NOTES:

1. The Key of the ingput record can be
anywhere in the record.

2. The input data record includes the
record lenqgqth field.

3. targe numeric keys can te generated for
the ountrut Aataset if desired.

4, The number of elerents in the user
structure is computed }ty accunulating
the total nunter of fields and/or
elements in the input record.

S Any field whose lenath is zero or
whose pointer is null, is bypassed,
If subfile suffix is not rlank, new
sub€ile recerd is located.

Sample DBLOAL EXIT Routine

The following sample exit routine is

shown tc¢ illustrate the above narrative.
The field has a ey, cne anchor file
field, and two subfile fields with two
elements each, The fields are all in
fixed locations. After initial allocation,
the only processing required is to scan a
record type field for the code *X* which
is used to indicate tc bypass this

reccrd, Note that all trailing blanks
will be stripped off and that every

input record is a new key and will have

an output record located for it. The
sutfile control field 'KID* has a field
size of zero. The sut-suffix byte for
this field gets assigned a '2Z' to indicate
this is a sutfile control field,

Loading Multi-files

PAGE 1413

For the most efficient use c¢f DBLOAD, it should
be noted that wherever possible, NC field
should te inverted while file is being loaded.
The DBPAC inversicn process is extremely
faster to load an entire file and then

invert the desired fields with the inversion
utility, invert. This module uses specialized
technigues and an 0S sort utility to bhuilad

the index files,

Subfiles shonld never be loaded independently of
t+he anchor file, however., DBPAC must generate
the subfile keys and post the subfile control
field for each subfile record.

PAGE 144

APPENDIX A
SAMPLE JCOB DECE

//CC CRDG JOE (9350,5¥sST,060),NECTERICS
//IBLCAD EXEC PGN=DBLCAL,REGION=800K
/ /5T EPLIB DD DSN=NASIS,JCBI1IB,DISP=SHR
//SYSPRINT DD SYSOUT=2
// B ROR DD DSN=FILENAME.ERROR,UNIT=2314
/7 VOI=SER=WORK(1,DISP=(NEW,KEEP),
//
DCE= (DSORG=IS,RECFN=V,IRECL=4001,BIKSTZE=L005,
/7 RKP=5,KEYLEN=4 ,0PTCDE=L) ,SPACE= (CYL, (3, 1))
/ /I8 BOT DD DSN=FILENAME. INPUT,UNIT=2314,
7/ VO1L=SER=WORK01,DISP=C1D,DCB=(DSORG=15,
4 RECFM=V,LRECL=4001,BLESIZE=4005,RKP=5,
7/ KEYIEN=U)
//FLLESS DD DSN=NASIS.FILE$SFILE$S,DISE=SHR
//FLLES$S# DD CS¥=NASYS FILE$$.FILESS#,DISP=SHR
//FLLES$S1 DD DSN=NASIS,FILE$$.FILRE$$1,DISP=5HR
//FLLESSY DD CSN=NASIS,FILE$$,FILESSY,DISP=SHR
//FILES$3Z DD DSN=NASIS, FILE$$.FILESZ,DISP=SHR
//STATIC DD DSN=NASIS,.STATIC,DISP=SHR
//ESDTAB DD DSKiNASIS,LCALTAE,lISP=5HR
//7CARLIN DD *

MODE=L

EXIT=XEXIT

FORMAT=DBFHNTLN

ANCHOR=Y

ASSOCIAT=1

SOEFILE= (Y,Z)
INPUT=FILENAME.INPOT
FILENAME=FILESS

/x 7/

//CC CRDGLK
//IKED

/7
//SYSPRINT
//SY SLIB
/7

4

//® SIS
/75Y SLMOD
/7Y SUTA
7/

/¥ //LBTABLE

7/
/7

PAGE 145

APPENDIX E

LINY¥EDIT FOR DBICAD

JOB{9350,S5YST,015) ,NECTERICS ,REGION=132K
EXEC PGM=IEVW1,
PARM='*XREF,LIST,LET,STZE= {150K,40K) "

DD
DD

SYSOUT=A
DSN=NASIS.JCBLIB,DIEP=SHE

DD CSN=ANSIS.TESTLIR,LISP=SHR

DD DSN=SYS1,PL1LIB,DISF=SHR

DD LSK=ANSIS,OEJLIB,DISP=SHR

DD DSN=NASIS,TESTLIE(LELOAD},DISP=SHE

DD DSN=E£SYSCT1,O0NIT=SYSD3,SPACE=(1024,
(200) 20)) ,SEP=({SYSLMCD,SYSIIB) ,LCB=ELESIZE=
1024 //SYSLIN IT *

INCLUDE NASIS (DBCALL,DBLCAD,PRTFILE,FPARY,
DEMPAC)

INCLUDE NASIS (DBUPDST,DBDBIO,JWEXITS,
DEEXITX, DERTNS)

INCLUDE NASIS {(EXITRTN)
ENTRY IHENTRY

EYEC DBTABLF,MODULE=DBICALC,MCDLIE=JOBRLIE,

ESCTAE=LOADTAB
//BUNETAB,SORTOUT DD LCB=NASIS.ESCTARAE

PAGE 146

APPEKDIY C.

/¥ XEXIT: TEST EXIT ROUTINE FOR RIDBLCAD FOR THE FILE
DEST DB x/

/¥ COMPANY: NEOTERICS COFRPCRATICN, CILEVELAND, OHIO
*/

*/

/% CLTENT: NASA2 LEWIYS RESERRCH CENTER

*/

/* SYSTEM: FHRASE AERCSPACE SAFETY INFORMATION SYSTEMN
(NAS IS) */ '

/* THIS TS A SANPLE E¥IT RCUTIKE FCR DBLCAL FOR DB2.
IT 2/

/* SHOWS ROW TO USE THE USER STRUCTURE TO ASSIGN FIELD
NAMES, FIELD */

/* OFFSETS, AND FIELD SIZES. IT AISC SHCES HOW TC USE THE
EXIT *y

/* BOUTINE SWITCHES TO ACCOFMPLISH VARICUS OPTIONS TO THE
LOAD, *y

¥RXTT: PROCEDURE (INPUT_CATA,USER_FETR,RYPASS_SWITCHES);
/¥ DECLARE BUILTTN FUNCTIO¥NS USED BY EXIT
*/

DCL {(NULL,ADDR} BUTLTIN:

*/

DCL INPOUT_DATR CHAR{4000) VAR; /% INPUT RECORL
* DCL USER_PTR FOINTER; /* USER POINTER
:: DCL BYPASS_SWITCHES CHAR (2); /* PROGRAM SWITCHES
/% DECLARE SPECTAL SHITCHES FOR PROGRAN
OPTIONS */

DCL 1 SPECIAL_SWITCHES BASED (SW_PTR),/* SFEC FROGRAM

SWIT CHES */
2 BYPASS_CALL BIT(1}, /¥ SKIF FUTURE CALLS

TO EXIT */
2 BYPASS_RECORT BIT(1), /SFKIF THIS EECORD

*/
BLANES */

2 FORWARD_SCAN BRIT(1), /% STRIP OFF LEADING

2 EAMACKWARD_SCAN BIT(1), /% STRIP OFF

TRAMLING BLANKS */
2 TERMINATE_PGF BIT{(Y, /RBCRT THE LOAD

*/

PAGE 147

2 CELETE_RECORL BIT(1), /* DELETE THIS
RECORD */

2 WEPLACE_RECOFT EIT (1} /% REPLACE THIS
RECRD *®/

2 UPDATE_RECORD BIT (1), /* ADD THIS RECORD

*/
2 NEW_EKEY BIT (1}, /% LCCATE THIS NEW
KEY */
2 SPECIAL_FILL BIT(7); /* UNDEFINED
*x/
DCL ON BIT(1) STATIC INIT{*'1'B); /% ON BIT SWITCH
*/
DCL OFF PFIT{1) STATIC INIT{('0'B): /% OFF RIT SWITCH
*/
DCL ONE_TIME CHAR(1) CONTROLLED: /* ONE TIME SWITCH
*/
/% DECLARE USER STRUCTURE TO BE ALLOCATED

RY EXIT */
/% ROUTINE AND DO THE FOLILOWING:

*/

/% AND CONTFOL FIELC AND ELEMENTS TO EBE PUT X/

*/

/* 2. ASSIGY FIELD NANMES.

)

/* 3. ASSIGN FIELD PCIKTERS TO OQFFSET IN INPUT
RECCRD */

/¥ 4., ASSIGN FIELD SIZES,

*/

DCL 1 OSER_STRUC BASEL (USER_PIR), /* USER BASED
STRUCTURE */

2 ©IM FIXED BIN(15), /¥ DIMENSICN OF
ARFAYS */

2 KEY_NAWE CHAR({S8) /¥ KEY NAME
*/

2 FEY_PTIR PTR, /* KEY PCINTER
*x/

2 KEY_SIZE FIXED BIN{15),/* KEY SIZE
*/

2 ITEMS (DIM_REFER REFIR /* REFER DIMENSION
FCF ARRAYS %/

(USER STRUC.TIN}) /*
*/
3 FIELD_PFTHR ETE, /% FIEFLD POINTER
*/
3 FTELD_SIZE FIYED BIN(15), /* FIELD STIZE
®/

3 SUB_SUFFIX CHAR(1}: /*SURFILE

SOFFIX:FIRST SUB~ #*/
/% FILE SUFFIX IS

CTEL FLD */
ICL DIE_REFER FIXED RIN(15); /% REFER DIMENSTON

TO BE ASSN %/

PAGE 148

/¥ DECLARFY EX¥IT ROUTINE ECINTERS

*/

DCL PTR1 POINTIER;
RECOFD #/

DCL SW_PTR PCINTER:

/% EOINTER FOR BASED

/% EOQOINTER FOR

SWITCHES */
:: DECLARE RECORI OVERLAY

DCL 1 RECCRD_IN BASED(PTR1), /* RECCRD OVERLAY
¥ 2 BLTH CHAR (4), /% RECORD LENGTH
., 2 RFILL CHAR({3J), * FILLER
. 2 EMPNO CHAR({4), /* EMPLOYEE NUMBER

2 RTYPE CHAR(Y),
X TEEW */

*/
2 EMPNANME CHAR(20),
NRFE_STRIP OFF */

*/

2 EMPAGE CHAR(2),
*/

2 KIDNAME1 CHAR{10},
*/

2 KIDNAME2 CHAR(10)
*/

2 KIDAGE1 CHAR(2)
*/

2 KIDAGEZ CHAR(2);
*/
PTR1=ADDR{INPUT_DATAY:
*/

SW_PTR=ADDR{BYPASS_SWITCHES):
*/
IF ALLOCATION (ONE_TIME) THEN
ALIOCATED */

GOTO CHECEK_RECORD;

*/

ALIDCATE ONE_TIME;
SWITCH %/
DIM_REPER_83
MAXINOM */
CONTRL %/

ALIOCATE USER_STRUC;
*/

/%
yL
/%
/#
/%
/¥
'I*

7%

/* PECORD TYPE:IF
/* SKIP THIS RECORD
/% EMPLOYEF
/% TEAILING BLANKS
/% EMPLOYEF AGE
/* KIDNANE_STRIP OFF
/* TRAILING BLANKS
/% KIDAGE_STRIP OFF
/% TRAILING BLANKS
SET BRECCRD BCINTER
SET SWITCHES POINTER
IF USER STRUC
6C AND CHECK RECORD
TOURK ON CNE TINE
SET DIMENSION TO
NUMBER OF FIELDS,

FIELDS, ANC ELEMENTS

DIM =DIM_REFER;
®/
KEY_NAM="EMPNO';
x/

Vi,
7%

KEY_TTR=ADDR (EEENC) /* SET KEY FOINTER

KEY_STZE=i;
*/

FIELD_NAME{1)='EMENANE"':
*/
FIELD_NAME(2)=?EMERGE';
*/

FIELD_NAME(3)='KIL'3

*/
FIFLD_NAME(4)=*KILNAME®;
FIFLD_NAME(5) ="KIDAGE";
FIFLD_NAME(6) =*KIL';

*y

FIFLD_NAME(7) ='KILNANE';
FIFLD_NAME{8)="KIDAGE'3;

FIELD_PTR(1) =ADDR (EMPNAME) 3
*/

FIELD_PTR{2)=ADDR (EMPAGE) ;
FIELD_PTR{3)=NULL;

PTR */

PIELD_PTR(4) =ADDR(FIDNAME1) ;
FIFLD_PTR{5)=ALDR (KIDAGE1) 3
FIELD_PTR(6) =NULL;

PTF */

FIELD_PTR (7)=ADDR (RIDNAME2)} ;
FIELD_PTR{8)=ACDR (KIDAGE2} 3

FIELD_SIZE(1)=203
SIZES */
PIELL_SIZE{2)=2;
FIFLD_SIZE{3)=0;
FIFLD_SIZE({4) =103
FIFLD_SIZE{(5)=2;
FIFLD_SIZE(6) =0;
FIFLD_SIZE(7)=10;
FIFLD_SIZE{8)=23

SUE_SUFFIX{1}=' '3
SUFFIX */

SUE_SUFFIX{2)=* '
SUE_SUFFIX{3}=7Z";
RECORT */
SUE_SOFFIX (4 =" ';
SUE_SUFFIX{S)=" *;
SUE_SUFFIX(6)=*2%;
RECORD »/
SUE_SUFFIX{7)=" *;

S %

7%
S%

,¥

Fa

PAGE 149

ASSIGY TG DI® IN STRUC

ASSIGN KEY NAME

%/

ASSIGN KEY SIZE

ASSIGY FIELD NAMES

SUB RECORD ONE

SUR RECORD THO

RSSIGN FIFLD CFFSETS

NUIL CONTROL FIELD

NOIL CONTROL FIELD

/% ASSIGN FIELD

/% BS5SIGN SUBFILE

/* SUBFILE Z

/%* SUEFILE Z

SUE_SUFFIX{8)y=* *;

BYPASS_CALL=0FF}

x/

PORWARD_SCAN=0FF;
LEADING BLANKS */
BACKHARD_SCAN=0ON;

BLANKS

*/

TERMINATE_PGM=0OFF;

LCRD

*/

DEIETE_BRECCRD=QFF;

*/

REELACE_RECORL =OFF;
UPTATE_RECORD=0OFF;
NEW_KEY=0N;

*/

DISPLAY ('USER STROUOCTURE ALLOCATED

RETURN;
*/

CHECK_RECORD:

*/

IF RTYPE="'X?

*/
%y

*/

THEN BYPASS_RECORD=ON;

ELSE BYPASS_RECORD=0FF;

RETURNS

*/
ENE;
*/

Vi
ri
7 ¥
Fa
/¥

Vg,
IN
Jx
Fi.
/*
7%
/%
/*

/%

PAGE 150

WILI CALL EXIT ROUTINE
DON'T STRIP OQFF
STRIP OFF TRAILING
DON*T TERMINATE THE
NOT AN UPDATE RUN
LOCATY THIS RECORD
EXIT ROUTINE.');
RETURN TO DBLOAD
CHECK RECORD TYPE
I¥F X RECORD TYPE,
BYPASS THIS RECORD
OTHERWISE, PRCCESS IT
RETURNY TO DBLOAD

ERD OF ECUTINE

PAGE 151%

TOITC D.4% - IRVERSION PROGRAM USER*S5S GUILE
I. INTRODUCTION

The NASIS inversion program is two maintenance
programs (DBIVRTI1, DBIVYRT2) and an 0SS sort utility
for data base file creation, The purvose of

the programs is to take data from certain fields
of a database and to post this data toc an

inverted index file, This oreration can be done
automatically by DEPAC during a normal file loading
operation, but it is very time consuming and could
therefore jeopardize the successful completion

of the lcad. Further, ty separating this function
out, in this manner, the capability cof creating
inverted indices after a file has been loaded and
used is added to the rerertoire of the NASIS
system., Finally, this separaticn also permits

the use of specialized technigues suitatle
specifically to this furction tc reduce the amount
of time reguired for the entire process ¢f loading
and index creation,

This manual describes the mode cf operation,
invoking DBSIVRT, gives examples of uvse, and
gives additional prcgrar notes,

1I. MODE OF OPFRATION

The inversion module can create up to ten inverted
index files cconcurrently. YFurther, these files
can each contain data from up to five separate

but related fields, The user can process a
spaecific number of input records, a range of

input records, or the entire file, Festart
capability is provided at the field reading

step, the scrt step, the index file creation

step, and the index file translaticn step.

Step one {invert 1) reads a dataplex, strips off
the field being inverted, ccncatenates the field
with the anchor key, and writes the concatenated
string on a sequencial data set,

The second, or sort step, invokes the 0S5 sort
utility and outputs a sorted sequential file,

Step three {invert 2) reads the sorted variatle
data set and creates a CISAM file, If the field
is not indexed with external format, this file
becomes the databtase index file,

ITf the field is indexed with external format

111,

1v.

PAGE 152

step three reads the QISAM file created by step
three, translates the keys with field formatting
routine, and creates translated index file,

INPUTS AND QUTPUTS

INVERT Table 1 lists the major inputs and
outputs from the INVERT1 prograrm,

INVERT Table 2 lists the major inputs and
outputs from the INVERTZ program.

CONTROL

The INVERT programs are controlled ty job coentrol
statements and parameter statements. The job control
statements are required to execute or invoke the
INVERT programs and to define the data sets that

are used and produced bv the programs. The

parameter statements are used tc control the
functions of the inversion,

JOB CCHNTHOL STATEMNENTS

INVERT table 3 shows the -ch control statements
necessary for executing or invcking the INVERT
process.

PARAMETER STATEMENIS

The INVERT process is ccntrolled by parameterx
statements. The pararmeter statements are entered
in the input stream {(CARLIN DD Statement) as
required. Following is a list cf INVERT progranm
parameters with their functions:

Y*FILENAHNE®
identifies the database that the field being
jnverted is on. Specified as a 1-6 character
nane,

1field:?
identifies the field(s) to be inverted.

Specified as: a 1-8 character name as
entered in the file descrirtors. MNultirle
fields mnst be entered as rultiple element
iist, TFields teing inverted to s=same index
file nust he kept together,

Example: (21,22,A3,B1,B2,C) First three
fields go on same index file, fields B1,
B2 go on same index file, field C qoes on

PAGE 153

index file Ly itself,

tmode?
identifies the proarar mcde of operation.

Specified as: a one character code,

F - initial pass, step one

R - restart at stefr one

3 - restart at step three (Step after Sort)
T - restart at translaticn phase of step 3

Default: the initial gass ('F') is assumed,
*records®

identifies the number of datakase records

to Process,

Specified ass 1-6 numeric characters.

Default: 999,999 records (or entire dataplex),

‘range'
identifies a range of file keys to process,

Specified as: a multiple element list of
two file keys, first key teing the ome to
start at, second kev being the cne to end at.

Example: (KEYCS,KEY10) Keys 5-10 will be
inverted,

Default: Entire file is assumed,

INPOT

DUTPUT

PAGE

INVERT Table 1, Trata sets used (input) and
produced {(cutputs) Lty the INVERT1 progran.

DATABASE: These data sets contain the data to
he inverted. The descriptors are alsoc needed
to define the data fields.

PARAMETER CONTROL CARDS: 1This data set contains
the program parameters for different proaran
functions,

RESTART FILE: This data set is needed if
program is invoked in restart mode, to
provide a restart Kevy.

OUTPUT FILF: This dJata set is a CSAK file
with the value of the field teing inverted

154

concatenated with the file Key, This file becomes

the input to the 05 scrt step.

HESSAGE DATA SET: This data set contains error
nessages and other infcrmaticnal messages {such
as record counts),

INET

ouUTPUT

PAGE

INVERT Table 2, TLata sets used {inputs) and
produced {cutputs) by the INVERT2 progranm,

INPUT FILE: This data set is the scrted output
from the 0S sort utility step.

DATABASE DESCRIPTORS: This data zet describes
the datatkase.

PARAMETER CONTROL CARLS: This data set contains
the progranm parameters for different program
functions.

PLEY FILE: This data set is in the form of an
index file with the internal field value as the
Key., This file becomes the input to the
translation routine to convert to the external
form. Produced onlv if external indexing.

RANGE FILF: This data set is the index file
with the internal format. It is produced conly
if a range of file Keys was specified as a
program parameter,

DATABASE INDEX FILE: This data set is the final
index file and is part of the database,

MESSAGE TATA SET: This data set contains error
ressages and other informaticnal messages {suckhk
as record countsy,

155

STAT EMENT
JOB
STATENENT

EXEC
STATEMENT

ST¥PLIB
DD
STAT EMENT

SYSPERINT
Do
STAT EMENT

PRICCT
pe
STAT EMENT

CARDIN
DD
STAT ERENT

DATAEASE
DD
STAT EMENTS

FIIE
oD
STAT EMENT

PAFY
np
STATEMENT

SORTIN
DD
STAT EMENTS

PLEX
DD

PAGE 156

INVERT Table 3, Jch Ccntricl Statements for
the INVERT process.

USAGE
This statement initiates the Fcb.

This statement specifies the prograp name
{PG¥=TINVERT1), (PGM=INVERT2), or, for the
sort utility, the sort rrccedure name (SORTD).

This statement defines the libkrary where the
production or current version of the INVERT
modules reside,.

This statement defines a sequencial message
data set, The data set can be written onto a
systen cutput device, a magnetic tape volunme,
or a direct access volume, (This DD statement
rust be present).

This statement defines the informational data
set written by the program, TCCB=(RECFN=FA,
LRECL=133, BLKSIZE=133%. DDNAME is fixed.

This statement defines the parameter card

set that contains the program paramneters.
Data set resides in the ingut stream. DLNAME
is fixed.

These statements define all the files that
are in the database (descrigtors, anchor,
associated, subfiles, indices).

These staterents define the (QSAM files that
are outrut fror ster one. Numeric inteqger
1~0 is concatenated to *FILE' to make the
appropriate DDNAME, Minimum LRECL is 18
{DSCRT utility).

LBECL is sum of file Kev lenagth plus maximum
field length,

This statement defines the restart file for
step 1. DCB = {RECFM=Y, LRECL=255).
CDNAME is fixed,

These statements define the sorted QSAM
data sets from the scrt step, Numeric
integer 1-¢ is concatenated to *SORTIN®
+o make the appropriate DDMNAME,

These statements define the temporarvy
index files with the internal field

PAGE 157

STATEMENTS format, The DCE will be the same as the
final index file.

Ve

PAGE 158

EXAMPLES OF USE

The INYERT process may Ye set up as one job
with three separate sters (INVEET1, SCRTD,
INVERT2)., Tf manv fields are teing inverted at
one pass, however, it is recomrmended to split
the three steps into separate jobs since these
will te multirle scrts,

The most efficient method is to invert as many
fields as possible in the same pass. Database
records only have tc be accessed one time for
multiple fields, The multicle s=orts could then
be set up as separate dchs.

Invert all associated fields separate as one pass from
anchor fields, This is verv efficient bhecause
only the asscciated file is accessed.

Example one shows two fields, 'EMPAGE' and
'EMPNAME' being inverted at the same time, The
datakase, 'FILE$$' has a Key length of 4, Since
the EMPAGE field is only two tytes in length

the minimum, LRECL of 18 is used for the FILEI1

DD statement (2+4), The EMPNAME field is varying
with a paximum lenqgth of 16, therefore, LRECL of
20 is used for PILE2Z DD statement (4 ¢+ 16).

Step 2 is an example of the IBM 0S sort utility,
SORTD. For further explanaticn, see IBM publication
order no. GC28-6543-7, C5 SORT/MERGE Program. The
sort control card specifies the sort field to start
in first position of recerd and go for 6 bytes,

The field is character and sort will he ir ascending
order. The size is 2C0 records. Note that if
condition code from STEEY is not less than 4, STEP2
will not be run, Only sort for the EMPAGE field

is shown, sort for EMENAME field would he similar.

Step 3 builds the final index files for the

EMPAGE and EMPNAME fields. lNcte that if the

sort step passes a condition cocde greater than 3
step 3 will not ke run., A glex DD statement is
needed for the EMPAGE field tecause of external
indexing, The two INLEX DD statements catalog the
index file entries after successful completion of
the run, VNote the MODE rarameter is *'3¢ for

step 3,

Note that all data sets are deleted upon
successful completion of jobh step. Cnly final index
files for database should be kert.

PAGE

I7 range of Keys had teen specified, final
output index file would have a DSNMAME of RANGE.
FILES$$, FIELENAMF, This data set is then used to
merage with cther range index files.

//¥X AMPLE1 JOP (9350,SYST,015), NECTERICS
//STEP1 EXEC EGM=INVERT1, REGICN=S200K
//STEPLIB DD DSK=NASIS.JOBLIB,DISP=SHR
//SYSERINT DD SYSCQUT=}

//ERTOUT DD SYSOUT=A, DCB={RECFM=FA,LPECL=133,

BIRSTZE(=133) //DL# DD
DSK¥-NASYS.PILE$$.FILES?4, DISF=SHR
7/TD DD DSN=NASIS.FILE$$,FPILESS, DISP=SHR
//IDA DD DSN=NASIS.FILE$$,FILE$$A,DISF=SHR
//IDB DD DSN=NASIS,FILE$$, FILE$$R, DISP=SKR
//FILE1 DD DSN=SORTIN.FILE$$.EMPAGE,UNIT=2314
’/ VOL=SER=WORK01, DCP= (RECFN=FEB,LRECL=18,
’/ BLKST?E=3600), SPACE={CY1,3),DISP=(NEN,
KEEP,LCELETE) //FILE2 LD
DSk=SORTIN.FILE$S.EMPNAME,ONIT=2314,
’/ VOL=SER=WORK02,DCB= {RECFM=FB, LRECL=20,
/7 BLESIZE=4000) ,SPACE= {CYL, 3),C1ISP=(NEW,
KEEP,DELETE} //CARDIN LD*

FITENAME=FILE
FIELD=(EMPAGE, ENPNAMNE)

MODE=F /*
/
//STEP2 EXEC SCRTD,REGION=9BK,CONL=(4,LT)
//SORT,SORTIK DD DSNAME=SORTIN.FILF$3.EMEAGE,
¥4 UNIT 2314 ,VOL=SER=WORKC1,CCE= (RECFN=FB,
7/ LRECL=18, BLKSIZE=3600}, CLISFt=(CLD,DELETE,

KEEP) //SORT,SORTCUT LT
DSMAME=SORTOUT.FILE$S,EMPAGE,

159

V¥4 UNIT=2314,V0L=SER=WORKO2,CISP={NEW,KEEP,DELETEY,

7/
SPACB={CYL,3) ,DCB= (RECFM=FB, LRECL=18, ELKSIZE=3600)
//SORT.SORTWKO1 DD UNIT=2314,SPACE={TRK, {(10},,CONTIG)
//SORT.SORTWKO2 DL UNIT=2314,SPACE={IFRK, (10),,CONTIG)
//SORT,SORTWKO3 DD UNIT=2314,SEACE={TRK, {10),,CONTIG)
//SDRT.SORTWKOU DD UNIT=2314,SPACE={TRK, (10),,CONTIG)
//SORT.SORTWROS DI UNIT=23104,SPACE=(TRK, {10),,CONTIG)
//SORT,SORTHKC6 DD ONIT)2314,SPACE=(18V, (10),,CONTIG),
/7 SEP= (SORTWKO01,SORTHKO2, SOBTWKO I, SORTWKY,
/7 SORTWROS)
//SORT,SISIN DL *

SORT FIELDS={1,6,CH,A),SIZE=200
Sk
//STEP3 EXEC PGN=INVERT2,REGICN=5C0K,CCND=(4,LT)
7/SYSPRINT DI SYSCUT=1
//STEPLIBE DD DSN=NASIS.JOBLIB,DISE=SHR
//ERTOUT DD SYSOOT=A,DCE= (FECFM=FA,LRFCL=133,
17 BLKSIZF=133)
770D 4 DD DSN=NASIS.FILE$$, FILE$$#,DISP=SHR

//TD

//SORTINT

/7
4

PAGE

DD DSN=NASIS.FILE$§$.FILESY,DISP=SHR
DD DSK=SORTOUT,.FIIE$S,EMPAGE,
DISP=(CLD,DELETE,KEEP) ,UNIT=2314,DCB=
{RECFM=FB, LRECIL=18,BLRSIZE=36400),
YOI=SER=WORKQ02 ,//SORTINK2 DD

DSN=SORTOUT.FILESS, EMPNAME,LISP=

77

7/
//7FLEY1
77

7/

77
//INDEX?
/7

/7

7/
//INDEX2
'y,

’/

7/

1/
//CARTIN

(OLD,CFLETE,KEEP) ,UNIT=2314 ,CCB= (RECFM=FB,
LRECL=20,BLKSIZE=4000),Y0L=SER=RORK(2
DD DSK=PLEX,PILES$.EMPAGE,DISP=(KEW,
DELETE) ,UNIT=2314,LCE= {ISORG=1S,RECF¥E=Y,
LRECL=8001,BLRSIZE=4005,0FTCT=L ,RRP=5,
KEYLEN=2),SPACE={{YL, (3,1)) ,VOL=SEF=WORKC1
DD DSN=NASIS.FILE$$A,0UNIT=2314,TISP=(NEN,
CATLG,DELETE) ,DCB={DSCRG=YS,RECFF=V,
LBEFCL=4001,BLKSIZF=4005, RKP=5,KEYLER=2,
QPTCD=LY , SPACE={CYL, {3,1)},VCL=SER=FDAQ 11
DD DSKN=NASIS,FILE$S,FILES$R,UNIT=2314,
DISP={NEW,CATLG,DEIETE) ,CCE=(LSCRG=1S,
RECFM=VY,LRECL=4001,FLKSIZE=4005,RKP=5,
KEYLEN=16,0PTCD=L) ,SPACE=(CYL, {3, 1) ,VOL=
SER=FDAO 11

tD *
FILENAFE = FILE
FIELD = (EMPAGE,EFENAME)

MODE = 3

160

PAGE

TO¥LC D,5S ~ INDEX MERGE PROGRAM USER'S GUIDE

I.

11,

INEOT

OUTP UT

ITI.

INTRODUCTION

The merger program {DBINDM) is a special prodaram
for the merqging of index files, The purpose of
the progranm is to take two index files (Created
from a like data hase) and nmerge them to a new
index file or inplace to the accepted current
index file, Further, the user is given the
options to process duplicate list elements.

This manual describes the mode of orperation for
DBINDM, the parameters used tc invoke DEINDN,
gives examples of its use, and gives additional
program nctes,

INPUTS ANLC OOTPODTIS

DBINDM Takle 1 lists the madjor inputs and
ontruts from the OBINDM preoqram.

NRINDN Table 1, Data sets used (inpaut) and
produced {output) by the DRINCM progran.

CURRENT INDEY FILE: This data set contains the
current database index lists,

UPDATE INDEY PILE: This data set contains the
nev or update postings to he merged with current
index file., This data bhase is usuvally created
by the INVERT program and has a LSNAME of
'TRANGE,'FILENAME,FIELDNAME.

NATABASE DESCRIPTORS: This data set provides
information ahout the field that is indexed.

UPDATED INDEX FILE: This data set is the
updated invlace versicn of the index file.

NEW INDEX FILE: This data set is the new

merged index file created from the current
index file and the update index file. The
DSNAME is 'INDNMRG,'FILENAME, FIELLCNAME,

MESSAGE DATAR SET: This data set contains
error messaqes and infcrwaticnal messages
{such as record counts).

CONTEOL

161

Tlhe DRINDM prograr is cecntrolled by job control

statements and parameter statements, The Fob

PAGE 1562

control statements are required to execute or
invoke the DBINDM program and to define the
data sets that are used and produced by the
program, The parameter statements are used
to control the functions ¢f the index nmerqge,

JOB CONTROL STATEMENTS
DBINDM Table 2 shows the <§ct contreocl statements

necessary for executing or inveking the DBINDM
Program,

STATEMENT

JCB
Statement

EXEC
Statement

SYSPRINT
Db
Statement

PRTOUT
DD
Statenent

CAEDIN
DD
Stat ement

DATABASE
DD
Statements

RANGE
il
Statement

INDMRG
Db
5tat ement

STFPLIB
DD
Stat enent

IV.

PAGE 163

TBINDM Tahle 2, Job Contraol Statements for the

DBINDM Progran
NSAGE

This statement initiates the -ob.

This statement specifies the proaram nanme
{PGM=DRINDM) or, if the jot ccntrol
statements reside in a rrccedure library,
the procedure name,

This statement defines a sequential message
data set. The data set can be written onto
a system output device, a magnetic tape
vclume, or a direct access volume, (This
DD statement must ke present,)

This statement defines the informational
data set written by the prcgram. DCB=
{RECFM=FA,LRECL=133,BLKSIZF=133), DDNAME
is fixed.

This statement defines the parameter card
data set that contains the proqgram
parameters, Data set resides in the input
strean, DDKRAME is fixed.

These statements define the database
descriptors, and the curremt database
index file.

This statement defines the update index
file tc ke merged with the current index
file, DSNANE must te
*RANGE,'FILENAME,FIELDNAME,

This statement defines the new merged
index file, The LSNAME is
tINDMBRG.'FILENANE,FIELDRANE,

This statement defines the librarv where
the latest version of the I[BINCM progranm
resides,

HODE OF QPERATIONS

THINDM can create a nevw inverted index
file, or it can merge inplace to the
current inverted index file., This is
done at the discreticn of the user.

vi.

PAGE

INVOKING DBINDH
PARAMETEF STATEMENIS

The DBINDM program is controlled by
parameter staterents., The parameter
statements are entered in the inrut strean
{CARDIN DD Statement) as reguired,
Following is a list of DBINDM prodram
varameters with their fonctions:

*FILENDME?
identifies the datarase with the
index file beina merged,

Specified as, a 1-6 character name
of the database.

tMode!?
identifies the program mcde of
operation.

Specified as: a one character code,
*FY - FIRSTPASS
R - RESTART

DEFRULT: NONE,.

*Madet?
identifies the target merge file,

Specified as: a one character code,
*11 ~ New File
0t - Inplace

tField?
identifies the master inverted index
field,

Specified as: 1-8 character name as
entered in the file descriptors.

tMode2?
indicates if duplicate list elements
will be processed or not,

Specified as: a one character code,

11* -~ Process Duplicates

0 - No Tuplicates Processed
EXAMPLES

Followina is an exanple of the +§ob contrel

164

statements reguired to invoke DBINDM.
gser wants to merge index file APOLLOA
RANGE,APOLLO.XKEYWORDS and create a new
file with duplicates being precessed,
value is 4 bytes lcng.

PAGE

The
with
index
Field

165

//EXAMPLE} JOB {9350,5YST,060) ,NECTERICS
//STEPR1 EXEC PGM=DBINDM,REGICN=800K
//STEPLIB bb DSN=NASIS.JOBLIB,DISP=5HR
//SYSERINT LL 5YSQUT=A
//ERTOUT bD SYSOUT A,DCB= (RECFM=FA,LRECL=133,
’/ BLESIZE=133)
//ID%# PD DSN=NASIS,APOLLC.AFOLLCH,DISF=SHR
//TD$ L LSN=NASIS. APOLLGC, AFOLLCA,DISP=5HR
//BANGE DD DSN=RANGE,APOLLC, KEYWCRDS,DISP=SHR
//INDHERG LL DS N=INDMFG. APOLLO.XEYWORES,
/7 ONIT=2314,Y0L=SER=WCRED1,
/7 TISP={(NEW,KEFP,DELETE) ,LCB=(LUSORG=IS,
// RECFM=V,LRECL=4001,BLKSIZE=4005,
/7 REP=5,KEYLEN=4,0PTCL=1L),
’/ SPACE=(CYL, {3,1)
//CARDIN DD *

FILERAME=APOLLO

MCDE =F

MODE 1=1

MCDE2=1

FIELD=KEYWORDS /%
¥4
¥1l. PROGRAM NOTES

3., If the user wvishes to merge inplace,
he first nust make a copy of the
current index file (for security
LEeasSoOns).

‘Bs The input or urdate index file to
be merged is named
RANGE,FILENAMEF, FIEITHAME, <Check
this before rrocessing is begun,

C. ¥%When meraqing tc a new file, the new
file bheing created is called
ITNDMRG.FILENAME.FIELDNAME.

D, After the new file is created and
checked, it shculd rerlace the current
index file, and the current index
file shculd be erased,

PAGE 166

TOFIC D.8 - MAINTERANCE OSER'S GUIDE
I. INTRODUCTIGN

The maintenance program {(DEMNTN) is an independent
podule to be used for maintaining the NASIS

system database., This maintenance will cemsist of
additions to, deletions from, modifications of the
data contained on a database. The data to be

used to descrite the desired changes will take

the form c¢f transacticns and will he obtained

from the transaction datatase (TRNSCT). The
transacticns can reference a rarticular record,
field or element in describing the desired

change,

maintenance, as designed, will always te run
non-conversaticnally, It must be run urnder the
nserid of the owner of the datahase being
maintained. The program is restartable im that,
each transaction proccessed successfully, is
deleted from the transaction datatase.

This manual describes the operating procedures,
the mode of operation, and the types of transactions
supported.

11 INFUTS AND OUTPRUTS

DBENTN Tatle 1 lists the mador inputs and
outputs from the DBMNTN program.

DBMNTN Table 1, Data sets used {inputs) and
produced (output) by the DBMEIN prograum.

INPUT DATABASE: These data sets are the files that
make up the database including the descriptors.

TRNSCT FILES: These t#o data sets are the
anchor transaction file and the TRNSCT file
desecriptors.

OUTPUT DATABASE: These data sets are the files of the
database that will be updated,

MESSAGF DATA SET: This data set contains errvor
pessages and other infcrmational messages (such
as record counts).

IYI1, CONTROL

The DBENTY program is controlled ty <job control
statements, The job contrel statements are

PAGE 167

required to execute or invoke the DBUNTN
program and to define the data sets that are

used and rroduced by the rrogranm,

The PARM

statement is used on the EXYEC card to define
the database being maintained.

JOB CONTRCL STATEMENTIS

DEMNTN Table 2 shows the ot control statements
necessary for executing or invoking the
DENETN program,

STATEMENT
JOE
STAT EMERT

EXEC
STATEMENT

SYSPRINT
nr
STAT EMENT

PRICUT
DL
STAT EMENT

DATABASE
DL
STAT EMEWTS

TRESCT
bD
STAT EBENTS

STEPLIB
DD
STAT EMENT

STATIC
nr
STAT EMENT

Iv.

DBMNTN Table 2. Jcb Contrcl Statements for the

DBMNTN Progran

USAGE
This statement initiates the job,

This statement specifies the prograe name
(PGP=DEMNTN) or, if the jot control statements
reside in a procedure library, the procedure,
The PARM functicn must be used with
appropriate datatase name. (PARM = 'FILES")
This statement defines a seguencial message
data set. The data set can be written onto
a system output device, a ragnetic tape
volume, or a direct access volume. (This

DD statement must ke present).

This statewent defines the informaticnal
data set written by the rrcqram. LCCB={RECFHN=
Fa,IRECI=133, BLESIZE=133) DDEAME is fixed.

These statements define all the files that
make uf the datatase (descriptor, anchor,
associated, sutfile, index).

These statements define the TRNSCT (transaction)
file and the TRNSCT file descriptors.

This statement defines the library where the
production or latest version of the DBMNTK
module resides.

This statement defines the STATIC {(statistics)
file.

MAINTENANCE OPERATING PROCELURES

V.

¥I.

//FX ARPL
//STEP

PAGE 168

In preparing to rum maintenance on a database, the
Database administer should perform a preliminary
step, He pay use the CORRECT ccmnmand to peruse
the transactions and to delete any which he

deems to te unnecessary or invalid (See CORRECT
command User's Guidey,

Once the transactions are determined £¢ be
acceptable, he is ready to initiate maintenance.
Restart is similar, bdut should require no
transaction editing,

MAINTENANCE MODE OF OFERATICHN

The datatase is opened for update, the transactions
are opened for update and processing begins.,

Bach transaction is handled separately and if
successfully processed, the transaction is deleted,
EXAWPLES

Following is an example of the €dob centrol
statements to initiate the DEMNTN program:

E1 JOP {935C,S5YsST,06(),NEOTERICS,REGICY¥:800K
EXEC EGM=DBMNTN,PARM=*FILESS"?

//ST EPLIDB DD DSR=NASIS.JOBLIB,DISP=SHR

/751 SERT
//ERTODT
//ID 5%
//Ib$
//IRESCT
Z/IRESCTY
//STATIC
/7

NT ©DBP SYSCUT=A
DD SYSOUT=A,DCB=(RECFM=FA,IRECL=133,BLESIZE=133)
DD DSN=NASIS,¥ILES$. FILESS#,DISP=SHR
DD DSN=NASIS.FILE$$.FILE$$,DISP=SHE
DL DSN=NASIS,TRNSCT.TRNSCI#,TISP=5SHER
DD DSK=NASIS,TRNSCT.TRNSCT,LISP=SHR
DD DSN=NASIS,STATIC,DISE=SHER

PAGE 169

TOHC E.71 - TSPL/I LANGUAGE EXTENSICN

I.

INTRODUCTION

The terminal support pregrocessor for NASIS (TS) allovs
the PL/T prograimer to incliude in his program,
statements, in normal PL/I syntax, which refer to and
use the varicus terrinal support functions., To enable
the use of the TS preprocessor in a particular progran,
it is cnly necessary to insert the following
statement:?

¥ INCLUDE LISHRWAC(TS);

This statement must appear before any actual use of the
treprocessor itself.

The preprocesscr functicns available are listed in the
appendix alcng with the terminal cecntrol block ({TO)
containing the various switches and ccntrol fields that
are used bty terminal suprort., The functions provided
perform a set of generalized operations on the terminal
device. These operations can be altered and refined by
the setting of appropriate switches in the TC block
before inveoking +the particular TS function, This
alteration is most useful for the PUT and PROMPT
operations,

In addition to the functions listed, terminal support
has defined two interrupt conditions, ATTFN and END, toO
facilitate rrogrammer ccntrol cf the terminal device.
The ATTN condition is raised each tive the user
depresses the attenticn key on his terminal, ®hen this
occurs, terminal support calls the last defined PL/I ON
block for ATTN's via the siqnal mechanism, If the OW
block returns, terminal support will prompt the auser
for a command with the fcllowing message:

~ATTIHN:

The user may respond tc this message with anv of +the
"impediate™ compmands:

SYNOKRYM
SYNCONYHNS
DEFAULT
DEFAULTS
PROFILE
EXPLAIN
PROMPT
STRATEGY
KA

IT.

PAGE 170

KR
BACK
END
APOFF
GO

A default response is interpreted as a GO0, If during
the executicn of one of these commands, the user
depresses the attention key, that command will be
terminated and the user will ke reprompted.

The wuser may define an ON ATTN block in his progranm,
but he must adhere to the following restrictions:

1. He mway only issye cutput TS functionms,

2. If he wants to suppress the system prompt, he
nust tranch out of his OW tlock {(bv so doing,
he cannot return to the point of
interraption).

If the user wishes to disable attentions completely, he
must set the 'DISABLED' bit in the systep data table
USERTAB. {This action shounld only ke taken in the most
critical situvations).

In the above description, if the nuser had responded
with an E¥D command, terminal support would have raised
the END condition via the signal wmechanism, The
purpose of this condition is to provide a standard
method of terminating a program or application and yet
allowing it to perform any "clean-up" actions that are
necessaryv, As with ATIN, any cutput TS nessages will
e allowed,

The terrinal surport functicns assume that the device
has a screen, and that this screen is divided into an
upper output area and a lower rproerting area. The
logical dimensions of the screen are defined by the
physical dirensions or the default values for the
symbols SCRNHGT and SCRNWTH. The current dimensions of
the screen can be found in the TC tleck doring the
execution of the program,

STATERENTS
A, ENABLE <ATTNWN | ENL | *RLL>;

This statement causes the default ccding for the
END and/or ATTN conditicns to bhe generated into
the prograrm, The default code for ATTN is to
simply return to the npeint of interruption. The
default code for END is to tranch to a rontine

c.

L.

PAGE 171

that will terminate the prograr via a RETURN,

This statement, if present, must appear only once
in the program and before any FENTRY statements,
This statement also implies an ENTRY statement,

ENTRY;

This statement must be executed before any other
TS statements, during a particalar invocation of
the program, It establishes the default OF
blocks generated Yty ENAELE and calls terminal
support to initialize the TC block. Because of
its function, an ENTRY statement should appear at
each entry point ¢f a program, or at a coRAOORD
point in the processing fer all entry points,

An ENTRY need not follow an ENABLE, as the ENABLE
statenent includes and implies ENTRY.

ON PAGE CALL {entry)s

This statement establishes the name of the routine
which is to process taging of the screen for the
current function., %When a function has filled the
screen with data and terminpates with more data to
be displayed, a PAGE command will result in a call
to the entrv point specified bv the most recent ON
PAGE statement,

The Ventry" parameter must be, or will be,
converted to a character string of eight or fewer
characters im length,

PROMPT MSG{key) <USING(inserts)> <INTO(buffer}>;

This statement has two functions, the outputting
of a message {where +the INTO clause is omitted)
and prcmpting for a ccmpand, The message
specified will be located in the wmessaqe library
and displaved to the user. Anv inserts svecified
will be placed in the proper positions within the
text before it 1is displaved. If the nmessage
cannot he found, terminal support will
automatically issue a diagnmostic coptaining the
message kev. If a ccrnmand prompt is indicated,
the text will be preceded ty a dash (-) and a
string of (": :") will be apvended to it before it
is displayed. All inserts will te stripped of
leading and trailing blanks. Unspecified inserts
will te replaced hy MEkxEn,

The "key" parameter nmust ke, or will be converted

t.

PAGE 172

to a character string of eight or fewer characters
in length, The "inserts" parameter wust ke a list

of twenty or fewer character strings, The
"hyffer” parameter must te a character string into
which the command entered 1is to he placed. It

should be eight characters in length, or
greater,

If the command entered by the user, after synonvym
search, will not fit in the string specified by
the user, TC.PROMPT.TRUNCATION will be turned on
by terminal support., Further, this, or any other
type of error {syntax, etc,), will cause
TC, PROMET, ERROR to ke turned on,

PROMPT MSG(key)}<USING({inserts)> KEYWORD(id)
INTO (buffer);

This statement 1is used to request parameters
and/or data from the user cr from the profile.

The Wkey" parameter must ke, or will be converted
to a character string of eight or fewer characters
in lenqth., The "inserts® parameter must be a list
of twenty or fewer character strings. The "igd"®
parameter must be, or will be converted to, a
character string of eight cor fewer characters in
length, The “huffer®™ parameter must be a
character string 1into which the data is to be
placed, The maximum size data element returned by
terminal support is 255 characters.

If +the TC,PROMPT.BYPASS tit is turmed on by the
user prior to this statement, terminal support
will examine the remaining parameters in its
buffer and the profile for the data value, but
will not rrompt the user, Ctherwise, if no value
is found in the buffer or in the rrofile, the user
will be prompted for the data value, If the "id"
parameter is null and the data is specified in
keyword format, terrinal support will ©post the
keyword into TC.PROMPT.KEYWORD for the user. If
the program detects an 1invalid data value and
wishes to reprongt the user for it, the
TC.PROMPT.ERROR bit should be turned on prior to
the PRCMET, If any errors are encountered by
terminal support, the TC,EROMFT,ERROR bit will be
turned on, If the data entered will not fit into
the string specified, the TC.PROMPT.TRUNCATION bit
will be turned on. If the value returned was
okttained from the user's profile, the
TC. PRCMET, DEFAULT bit will ke turned on.
Likewise, if +the value returnmed was a quoted

F.

PAGE 173

string, the gquotes will be removed and the
TC., ERCMET,STRING bit will be turned on. If the
value returned is an elerent of a parenthesigzed
list, only the element will te rsturned, and the
TC.PROMPT MORE_DATA hit will he turned On.
Subseguent prompts will result 3in succeeding
elements being returned, until the end of the list
is reached.

READ INTO{buffer);

This statement causes the current contents of the
screen to be returned to the user,

The "buffer” parameter must ke a character string
into which the data is to be placed,

WRITE FRCM (tuffer);

This statement canses the screen to Yte vwritten
from the area specified, without any editing.

The "buffer" parameter must be a character string
which contains the data to te written.

PUT <LINE | PAGE> FROM{buffer) <TAG{value)>
<FORWARD|BACEWARDD>;

This statement causes a new record to be placed
into the screen buffer.

The "hyffer™ parameter must he a character string
which <contains the data to te written. The
nyalue" rparameter must be a character string which
is to be used to identify this cutrut record. if
LINE is specified, the record 1is sequentially
added to the screen tuffer, 1If PAGE is specified,
the screen buffer is reset and this record becones
the first record of the new screen., The FORWARD
and BACKWARD opticns are used to control the
directicn of the sequential filling of the screen
tuffer, €fror the top down, or from the bottonm

ap.

If the user's data exceeds the width of the
screen, the seccnd and subseguent lines begin at
the position indicated hy TC.OUTPUT,.INDENT, It
the usert*s data causes the screen to overflow,
the amount of data written is indicated by
TC.0UTPUT.WRITTEN, If the wuser wishes only
complete records to te written teo the screen, he
shonld have TC,QUTBUT.PUT_FARTIAL turned off, TIf
the user wishes the screen to be automatically

1.

J.

PAGE 174

written when the buffer is filled, he should turn
on the 1C,0UTPUT.ATUTO_WRITE bit. If the user
wishes to have his lines ervrlit between words (for
text rrocessing) he should turn on the
TC.OUTFUT, HORD_BREARK bit. If the user has
displayed a segment of the current record on the
previous page and he wants the remaining seqment
tagged and/or indented, bhe must turn on the
TC,OUTPUT.CONTINUATION bit, If the 1last PUT
caused the baffer to te filled, the
TC,QUTPUT.OVERFLO¥ will be turned on.

FIUSH;

This statement is w©sed to force the contents of
the screen buffer tc be written, even though it is
not filled, If the user wants tc indicate that
more data remains to be displayed via the paging
mechanisn, he should turn on the
TC.,OUTPUT.MORE_DATA bit tefore his last outpat
operation.

FINISH;

This statement causes the treprocessor to generate
the necessary code to enable execution time
compsynication with +terminal support. It must be
the last TS statement in the program.

PAGE 175

TOFIC G, 1 - USAGE STATISTICS

I.

I1.

INTRODUCTION

Usage Statistics is, essentially, a separate sub-systen
of NASIS, whose function is tc collect and retain
statistics, conceiving the use and status of the
system, The statistics maintained are divided into
retrieval statistics, use cf the system, and
pmaintenance statistics, status of the data. The
retrieval statistics include counts of the number of
times that various commands have teen invoked, the
number of retrieval sescsicns, the dates and time used
for those sessions, as well as the aggregate tire spent
retrieving data. The mairtenance statistics include
counts of the naumbers of record additions, deletions
and updates, for the amchor file, subrecord files and
for all inverted index files.

The maintenance of +thase statistics is an auntomatic
function and will not be discussed here, ®hat will be
covered by this document is the production and use of
the reports available through 1iUsage Statistics, It
should be noted +that +the retrieval statistics are
available to any WASIS user, while the maintenance
statistics are available to the owner of the dataplex
only,

STATISTICS CEECKPOINT

The statistics gathered for retrieval are maintained on
a2 per sessicr basis, with a caracity £for thirteen
sessions before re-initialization is necessary.
Because of this, a check is made each time a new
session is begqun, and if re-initialization is
necessary, a checkpoint 1listing of the retrieval
statistics is produced, so that the data on file will
not ke laost,

The checkpoint report is a formatted 1list of the Jdata
cn file for a rarticular WASISID, before
reinitialization. It w%ill ccntain a line entrv for
each of the sessions on record, displaying the command
counts, the lines, the date, the file name, and other
pertinent information. The DEA should examine this
report +to analyze the usage that NASISID is makina of
the system and of the individual datarplexes. TIf he
deems that some action is necessary, €.9., a user is
logged onto the system for excessive periods of tipe,
tut not executing many commands, he should do whatever
he feels is reounired. In any event, the report should
be retained for future reference and analysis, and

I1T,

1v.

PAGE 176

should probatly be filed by NASISID.
A sample checkpoint report is included in Fiqure 1.
RETRIEVAL STATISTICS REPCRT

By snbmitting JOB CCCRPRNTR, the status of the entire
retrieval satistics file can be rresented, This report
displays the activity of the various NASISIDS, the
various data bases and the various retrieval
commands,

The retrieval report is forratted bty WASISID, with a
line entry for each terminal session. These entries
present the various command counts, the lines, the file
names, and other pertinent information., 1In addition, a
summary is made, at the end, of the aggregate times and
sessions for all users.

A sanple retrieval report is inclonded in Figure 2,
FAINTENANCE STATISTICS REPORT

By submittipng JOB CCCRERTH, the status of the entire
maintenance statistics file can be presented, This
raeport shonld be used by the DEBA to validate the
maintenance records of each data base., In addition, it
should be used to assess the maintenance activity of
the various dataplexes. ¥ith this information, the DBA
will be in a hetter position tc know the exact status
of his datarlexes, when to backup the system, when to
reorganize his files, and many other guestions that
must te answyered in order to wmaintain vproper control
over the system and its data,

The maintenance report is formatted by dataplex namne,
%ith a line entrvy for each raintenance run. These
entires present the counts of the nurter of additions,
deletions and updates rade to the anchor and associated
files, the subrecord files and the inverted index
files. In addition, a summary is made, for each file
showing the aggregate and the average nunher of
additions, deletions and updates to the dataplex.

A sample maintenance report is included in Figure 3,

DATAFLEX TOTAL ANCHOR NUMBER TRANS MATNTENANCE
RUNS

NAME

ABRD1S

MAINTENANCE STATISTICS‘FOR SYSTEMS MANAGER **

TRNS RECORDS

3,132

1

01/11/73 PAGE 1

FILEPLEX SUBPLEX . XPLEX

- DATES ADDS DELETES UPDATES ADDS DELETES UPDATES ADDS DELETES UPDATES

g

S 12/19/72 3,132 ' ' e j

FILEPLEX ~ ADDS DELETES - UPDATES

TOTAL 3,132 FOR ALL RUNS

AVERAGE 3,132 PER RUN

Lt/

NASTSID

NEO1

CONN-TIME CPU-TIME®

HR:MM:SC HR:MM:5C:M§

0:53:30

0:00:48:790

RETRIEVAL STATISTICS

#

SES LENGTH.

5

.0

#

~ STRAT STORED OWNER

ID

SAOWNER -
SAOWNER

SAOWNER
SAOWNER
SAOWNER
SAOWNER

SAOWNER

FILE
NAME

ASRD1SA
ASRD1SB
DB2TDBA
DB2TDEB
DB2TDBC

‘DB2TDBD
DB2TDBE -

- EMPAGE

'SVCDATE

. 01/03/73 -

AUTHOR
KEYWORBS = = 1
TOTALCAR

KIDAGE
PET -

e e RN R

SEL

OO OO0 00

COQOOOQQO0o

.".FIELD ' ACTUAL TOTAL NUMBER‘OFl

- NAME- EXP SRCH CORR

SO UO oo

AL1

‘LISR 1D .CONN~TTIME

NEQ1

HR:MIN:sC

119140

SNAPSHOT (CHECKPOINT)OF RETRIEVAL SIATISTICS REGORDS BETORE REINITIALIZATION

CPU~TIME '
HR:MN:SC:MS . SES - L

0:00:12:399 ‘

'#e

2

12/18/72

STRAT OWNER—ID PIELD FILE

ENGTH

SAGWNER

N

" KEYWORDS ASRDI$B

 NAME . naME

PAGE 1

SESSION # = 4 ¥ ¢

_ DATE . EXPANDS SELECTS SEARCHS CORRECTS

721215

721215 g

s 721215‘

721215

721215

721215

721215

721215

- 721215

721215
721215
721215

721215 - 1

bL/

